Г	AAAC	2-6201	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for	AC	CR	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR
	123.3 (1/0)	7	Azusa	0.398						824-T16	26/19	Drake795	1.128	Х	X	Х	Х	Х
	1/0	19	Annapolis	0.403														
$\left(\right)$	4/0	7	Alliance	0.563	1007235505	11	0.927	1036090095	1036090070									
	4/0	19	Amarillo	0.570	1007235505	11	0.934	1036090095	1036090070									
	559.5	19	Darien	0.858														
										AC	SR	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
	A/	4C	Wire Code	Conductor Diameter	Preformed Armor Rod	Rods per	Overall Diameter with Armor Rod	MID for Suspension	MID for Suspension	Wire Size	Stranding	Code Word	Diameter (inches)	Armor Rod MID	per Set	with Armor Rod (inches)	Suspension Clamp over PAR	Suspension Clamp w/o PAR
	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR	#6	6/1	Turkey	0.198			. ,		-
	10	7	1.2.4	0.000									l – – – – – – – – – – – – – – – – – – –		-			

		Code	Diameter	Armor Rod	per	with Armor Rod	Suspension	Suspension
Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR
#2	7	Iris	0.292					
1/0	7	Рорру	0.368					
1/0	19	-	0.373					
2/0	7	Aster	0.414					
3/0	7	Phlox	0.464					
4/0	7	Oxlip	0.522					
4/0	19	-	0.528					
214.0	7	-	0.524					
336.4	19	Tulip	0.666	1007236610	13	1.030	1036090118	1036090075
477.0	19	Cosmos	0.793	1007237020	11	1.293	1036090149	1036090095
477.0	37	Syringa	0.795	1007237020	11	1.295	1036090149	1036090095
500.0	37	Hyacinth	0.814					
556.5	19	Dahlia	0.856					
556.5	37	Mistletoe	0.858					
636.0	37	Orchid	0.918			1.429	11-1464	11-1440
795.0	37	Arbutus	1.026	1007237060	12	1.646	1036090204	1036090118
795.0	61	Lilac	1.028					
954.0	37	Magnolia	1.124					
1033.5	37	Bluebell	1.170	1007237070	13	1.790	1036090204	1036090136
1033.5	61	Larkspur	1.172	1007237070	13	1.792	1036090204	1036090136
1192.5	61	Hawthorn	1.258					
1272.0	61	Narcissus	1.300					11-1464
1431.0	61	Carnation	1.378					
1590.0	61	Coreopsis	1.453	072-370-80	12	2.184	1036090252	1036090204

ACSR		Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
Wire Size	Stranding	Word	(inches)	Armor Rod MID	per Set	(inches)	Clamp over PAR	Clamp w/o PAR
#6	6/1	Turkey	0.198			, ,		I
#4	6/1	Swan	0.250					
#4	7/1	Swanate	0.257					
#3	6/1	Swallow	0.281					
#2	6/1	Sparrow	0.316			0.610	11-1424	11-1408
#2	7/1	Sparate	0.325					
#1	6/1	Robin	0.354					
1/0	6/1	Raven	0.398			0.747	11-1424	11-1408
2/0	6/1	Quail	0.447			0.797	11-1424	11-1408
3/0	6/1	Pigeon	0.502	1007235400	11	0.836	1036090095	1036090060
4/0	6/1	Penguin	0.563	1007235505	11	0.927	1036090095	1036090070
219.9	8/7	-	0.6079					
266.8	18/1	Waxwing	0.609			0.973	11-1440	11-1424
266.8	6/7	Owl	0.633			0.997	11-1440	11-1424
300.0	30/7	Piper **	0.700	1007236620	12	1.108	1036090136	1036090085
336.4	18/1	Merlin	0.684	1007236620	12	1.092	1036090118	1036090075
336.4	26/7	Linnet	0.721	1007236630	12	1.129	1036090136	1036090085
336.4	30/7	Oriole	0.741	1007236640	13	1.149	1036090136	1036090085
397.5	18/1	Chickadee	0.743					
397.5	26/7	lbis	0.783					
477.0	18/1	Pelican	0.814	1007237020	11	1.314	1036090149	1036090095
477.0	26/7	Hawk	0.858	1007237026	12	1.358	1036090149	1036090095
477.0	30/7	Hen	0.883	1007237026	12	1.383	1036090149	1036090095
556.5	18/1	Osprey	0.879					
605.0	26/7	Squab	0.966					

ACAR		Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for	
Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR	
1280.0	42/19	-	1.302	1007237077	12	2.032	1036090218	1036090136	

AC	CC	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
Wire Size	Stranding	Word	(inches)	Armor Rod MID	per Set	(inches)	Clamp over PAR	Clamp w/o PAR
-	X/X	-	Х	Х	Х	Х	Х	Х

CLAMPS WITH SO APPLICATIONS AN WIRE APPLICATIO BYSTEM ENGINEE	LAMPS WITH SOCKET FITTINGS ARE USED FOR PHASE CONDUCTOR PPLICATIONS AND CLAMPS WITHOUT SOCKET FITTINGS FOR STATIC /IRE APPLICATIONS. FOR OTHER APPLICATIONS, CONTACT ELECTRIC YSTEM ENGINEERING - TRANSMISSION SECTION.											
Contact Engine	ering Standards - Transm	nission for t	the creation of ne	w standard	ls and CUs.	Drawing Scale:	N/A					
IBERDROLA USA TRANSMISSION CONSTRUCTION STANDARDS MANUAL TRANSMISSION CONDUCTOR AND STATIC RELATED INFO SUSPENSION CLAMPS												
Drwn. By: Date Dr.: L.A. Best 10/10/2012	Checked By: Shepard/Becken/Hart	Date Ck.: / /2014	Approved By Barry R. Hart	Date App.: / /2014	TM2.23	3.TJ-01-001	Sheet 1					

THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY

 \bigcirc

ANSI B () 11" X 17" ()

Clamp, Suspension, Aluminum, with socket eye connector

NYSEG MID	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)
1036090060	OBSOLETE us	se 1036090070	HAS-62-S	0.20 - 0.62	17,000	LS-0-S	0.20 - 0.70	17,000
1036090070	6000111408		HAS-62-S	0.20 - 0.62	17,000	LS-0-S	0.20 - 0.70	17,000
1036090075	6000111424		HAS-85-S	0.40 - 0.85	18,000	LS-1-S	0.40 - 0.87	18,000
1036090085	6000111424		HAS-85-S	0.40 - 0.85	18,000	LS-1-S	0.40 - 0.87	18,000
1036090095			HAS-104-S	0.50 - 1.04	25,000	LS-2-S	0.40 - 1.05	25,000
1036090104	6000111426		HAS-104-S	0.50 - 1.04	25,000	LS-2-S	0.40 - 1.05	25,000
1036090118			HAS-118-S	0.70 - 1.18	25,000	LS-3-S	0.75 - 1.19	25,000
1036090129	use 103	6090136						
1036090136	6000111440		HAS-139-S	0.90 - 1.39	25,000	LS-4-S	0.87 - 1.37	25,000
1036090139	use 103609013	36,1036090149						
1036090149			HAS-147-S	1.00 - 1.47	25,000	LS-6-S	1.00 - 1.49	25,000
1036090177			HAS-162-S	1.10 - 1.62	25,000	LS-7-S	1.10 - 1.77	25,000
360-901-92	6000111464		HAS-182-S	1.25 - 1.82	25,000	LS-8-S	1.25 - 1.92	25,000
1036090204			HAS-204-S	1.40 - 2.04	25,000	LS-9-S	1.40 - 2.18	25,000
1036090218	6000111480		HAS-213-S	1.40 - 2.13	25,000	ACS-10-S	1.75 - 2.33	25,000
1036090252			HAS-252-S	2.00 - 2.52	30,000	ACS-11-S	2.00 - 2.55	25,000
1036090280						ACS-12-S	2.35 - 2.85	40,000
360-903-53								
	6000111490 *			1.00 - 1.18	25,000		1.00 - 1.18	25,000
* EHV/ 3/5kV/								

Clamp, Suspension, Ductile Iro

	• •			· .				
NYSEG M I D	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)
1036097046	6000111376		MS-46-S	0.20 - 0.46	16,000	FSC-46	0.16 - 0.46	16,000
360-970-60			MS-60-S	0.20 - 0.60	17,000	FSC-60	0.20 - 0.60	17,000
1036097070	6000111392		MS-70-S	0.30 - 0.70	18,000	FSC-70	0.30 - 0.70	18,000
1036097082			MS-82-S	0.40 - 0.82	18,000	FSC-83	0.40 - 0.83	18,000
360-970-99			MS-104-S	0.50 - 1.04	25,000			
360-971-27								

Clamp, Suspension, Ductile Iron, without socket eye connector														
NYSEG M I D	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)						
1036098046			MS-46-N	0.20 - 0.46	16,000	FSC-46	0.16 - 0.46	16,000						
1036098060			MS-60-N	0.20 - 0.60	17,000	FSC-60	0.20 - 0.60	17,000						
1036098070			MS-70-N	0.30 - 0.70	18,000	FSC-70	0.30 - 0.70	18,000						
1036098083			MS-82-N	0.40 - 0.82	18,000	FSC-83	0.40 - 0.83	18,000						
360-980-99			MS-104-N	0.50 - 1.04	25,000									
360-981-27														

345KV CORONA FREE

NYSEG MID	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strengtl (pounds
1036091060			HAS-62-N	0.20 - 0.62	17,000	LS-0-N	0.20 - 0.70	17,000
360-910-70			HAS-85-N	0.40 - 0.85	18,000	LS-1-N	0.40 - 0.87	18,000
360-910-85			HAS-85-N	0.40 - 0.85	18,000	LS-1-N	0.40 - 0.87	18,00
360-911-04			HAS-104-N	0.50 - 1.04	25,000	LS-2-N	0.40 - 1.05	25,00
360-911-18			HAS-118-N	0.70 - 1.18	25,000	LS-3-N	0.75 - 1.19	25,000
360-911-29			HAS-139-N	0.90 - 1.39	25,000	LS-4-N	0.87 - 1.37	25,00
360-911-36			HAS-147-N	1.00 - 1.47	25,000	LS-6-N	1.00 - 1.49	25,00
360-911-47			HAS-162-N	1.10 - 1.62	25,000	LS-7-N	1.10 - 1.77	25,000
360-911-77			HAS-182-N	1.25 - 1.82	25,000	LS-8-N	1.25 - 1.92	25,00
360-912-04			HAS-204-N	1.40 - 2.04	25,000	LS-9-N	1.40 - 2.18	25,00
360-912-18			HAS-213-N	1.40 - 2.13	25,000	LS-9-N	1.40 - 2.18	25,00
360-912-33						ACS-10-N	1.75 - 2.33	25,00
360-912-52			HAS-252-N	2.00 - 2.52	30,000	ACS-11-N	2.00 - 2.55	25,00
360-912-63								
360-912-80								
360-912-85						ACS-12-N	2.35 - 2.85	40,00
360-913-53								

Cla	Clamp, Suspension, Bronze, with socket eye connector													
NYSEG M I D	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)						
			BRS-60-S	0.20 - 0.60	16,000	LS-0-N	0.20 - 0.70	17,000						
			BRS-83-S	0.40 - 0.83	18,000	LS-1-N	0.40 - 0.87	18,000						
			BRS-100-S	0.625 - 1.00	22,000	LS-2-N	0.40 - 1.05	25,000						
			BRS-118-S	0.70 - 1.18	25,000	LS-3-N	0.75 - 1.19	25,000						

FOR ASSISTANC OR ELECTRIC S	E: CONTACT ENGINE STEM ENGINEERING	ERING ST - TRANSN	ANDARDS - TR	ANSMISS ON.	ION		
Contact Engine	ering Standards - Transn	nission for t	the creation of ne	ew standar	ds and CUs.	Drawing Scale:	N/A
IBERDROLA USA	IBERDROLA USA TRANSMISSION CONSTRUCTION STANDARDS MANUAL	TRAI	NSMISSION CC SL PHYSI connect f	DNDUCTO JSPENSIC CAL CHA o NEMA	R AND STAT N CLAMPS RACTERISTIC class 52-3 or	TIC WIRE INFO CS 52-5	Revision 00 Date / /2014
Drwn. By: Date Dr.: A. Best 11/21/2012	Checked By: Shepard/Becken/Hart	Date Ck.: / /2014	Approved By Barry R. Hart	Date App.: / /2014	TM2.23	3.TJ-01-002	Sheet 1

 \bigcirc

 \bigcirc

 \bigcirc ANSI B 11" X 17"

on,	with	socket	eye	connector
-----	------	--------	-----	-----------

AAA	C-6201	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for	AC	CR	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
Wire Size	Stranding	Code	Diameter	Armor Rod	per	with Armor Rod	Post Clamp	Post Clamp	Wire Size	Stranding		Diameter	Armor Rod	per	with Armor Rod	Post Clamp	Post Clamp
123 3 (1/0)	7				Sei	(incries)	over PAR	W/0 PAR	824 T16	26/10	Drako795			Sei		over PAR	W/0 PAR
1/0	, 19	Annapolis	0.030						024-110	20/13	Diaker35	1.120	Χ		~	~	
4/0	7	Alliance	0.563	1007235505	11	0.927	1036160106	1036160084									
4/0	19	Amarillo	0.570	1007235505	11	0.934	1036160106	1036160084									
559.5	19	Darien	0.858	1007200000		0.001	1000100100	1000100001									
											1 100	O an du atan					
		10/	Conductor						AC	SR	VVire Code	Diameter	Preformed Armor Rod	Rods	with Armor Rod	MID for Post Clamp	MID for Post Clamp
A	AC	vvire Code	Diameter	Armor Rod	Roas	with Armor Rod	MID for Post Clamp	Post Clamp	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR
Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR	#6	6/1	Turkey	0.198					
#2	7	Iris	0.292						#4	6/1	Swan	0.250					
1/0	7	Рорру	0.368						#4	7/1	Swanate	0.257					
1/0	19	-	0.373						#3	6/1	Swallow	0.281					
2/0	7	Aster	0.414						#2	6/1	Sparrow	0.316			0.610		
3/0	7	Phlox	0.464						#2	7/1	Sparate	0.325					
4/0	7	Oxlip	0.522						#1	6/1	Robin	0.354					
4/0	19	-	0.528						1/0	6/1	Raven	0.398			0.747		
214.0	7	-	0.524						2/0	6/1	Quail	0.447			0.797		
336.4	19	Tulip	0.666	1007236610	13	1.030	1036160150	1036160084	3/0	6/1	Pigeon	0.502	1007235400	11	0.836	1036160106	1036160057
477.0	19	Cosmos	0.793	1007237020	11	1.293	1036160150	1036160084	4/0	6/1	Penguin	0.563	1007235505	11	0.927	1036160106	1036160057
477.0	37	Syringa	0.795	1007237020	11	1.295	1036160150	1036160084	219.9	8/7	-	0.6079					
500.0	37	Hyacinth	0.814						266.8	18/1	Waxwing	0.609			0.973		
556.5	19	Dahlia	0.856						266.8	6/7	Owl	0.633			0.997		
556.5	37	Mistletoe	0.858						300.0	30/7	Piper **	0.700	1007236620	12	1.108	1036160150	1036160084
636.0	37	Orchid	0.918			1.429			336.4	18/1	Merlin	0.684	1007236620	12	1.092	1036160150	1036160084
795.0	37	Arbutus	1.026	1007237060	12	1.646	1036160199	1036160150	336.4	26/7	Linnet	0.721	1007236630	12	1.129	1036160150	1036160084
795.0	61	Lilac	1.028						336.4	30/7	Oriole	0.741	1007236640	13	1.149	1036160150	1036160084
954.0	37	Magnolla	1.124	4007007070	10	4 700	4000400400	4000400450	397.5	18/1	Chickadee	0.743					
1033.5	37	Bluebell	1.170	1007237070	13	1.790	1036160199	1036160150	397.5	26/7		0.783	4007007000		4.044	4000400450	4000400004
1033.5	61	Larkspur	1.172	1007237070	13	1.792	1036160199	1036160150	477.0	18/1	Pelican	0.814	1007237020	11	1.314	1036160150	1036160084
1192.5	61	Hawthorn	1.258						477.0	26/7	Намк	0.858	1007237026	12	1.358	1036160150	1036160106
1272.0	61	Cornetion	1.300						477.0	30/7		0.883	1007237026	12	1.363	1030100150	1036160106
1431.0	61	Carnation	1.370	072 270 90	12	2 194	261 602 70	1026160150	605.0	10/1	Squab	0.879					
1590.0	01	Coreopsis	1.405	072-370-60	12	2.104	301-002-70	1030100130	605.0	20/7	Squab	0.966					
AC	AR	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for									
Wire Size	Stranding	Code	Diameter	Armor Rod	per	with Armor Rod	Post Clamp	Post Clamp									
1200 0	12/10	vvora			5et		0VEF PAK	W/0 PAK									
1200.0	42/19	-	1.302	100/23/0//		2.032	1030100230	1030100130									
L	<u> </u>																
			1 -					· · · · · · · · · · · · · · · · · · ·		0.074.105							
AC	CC	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for		SISTANCE:			NG STANDAR	JS - TF	ANSMISSION		
Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR						32011			
1	1		· /			· · /			I Conto	ot Logiogorio	a Standarde	Ironemieci	on tor the creati	on of n	ow atondarda and (awing Soola NI/A

	Cont	act Engine	ering Standards - Transr	nission for	the cre
	IBER USA	DROLA	IBERDROLA USA TRANSMISSION CONSTRUCTION STANDARDS MANUAL	TRA	NSMIS PC
ſ	Drwn. By:	Date Dr.:	Checked By:	Date Ck.:	Appr
	L.A. Best	10/10/2012	Shepard/Becken/Hart	/ /2014	Barry

THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY

 \bigcirc

 \bigcirc

 \bigcirc ANSI B 11" X 17" X/X

-

Х

-

Х

Х

Х

Х

Х

ARDS - TR ON SECTI	ANSMISS ON.	ION		
eation of ne	ew standar	ds and CUs.	Drawing Scale:	N/A
SSION CO DST INSU	NDUCTO LATOR (⁻	R AND STAT (RUNNION) C	IC WIRE INFO CLAMPS	Revision 00 Date / /2014
roved By: y R. Hart	Date App.: / /2014	TM2.2	3.TJ-02-001	Sheet 1

Wire Size			Diamatan						ACSR/	/ 1 V V		Discustor	i leioimeu	11003			
	Stranding	Code Word	(inches)	Armor Rod MID	per Set	(inches)	Post Clamp over PAR	w/o PAR	Wire Size	Stranding	Code Word	(inches)	Armor Rod MID	per Set	(inches)	Post Clamp over PAR	Post Clamp
636.0	18/1	Kingbird	0.940			(0,011,7.1.		477.0	22/7	X/TW	0.808			(00011741	
636.0	24/7	Rook	0.977						568.4 TW-23	22/7	X/TW	0.883					
636.0	26/7	Grosbeak	0.990						602.5 TW-16	20/7	Hen/TW	0.883	1007237026	12	1.383	1036160150	1036160106
636.0	30/7	Scoter	1.019						636.0 TW-16	20/7	Grosbeak/TW	0.906					
636.0	30/19	Egret	1.019						795.0 TW-16	22/7	Drake/TW	1.011					
715.5	30/19	Redwing	1.081						1272.0 TW-7	33/7	Bittern/TW	1.215	1007237075	12	1.945	1036160199	1036160150
795.0	24/7	Cuckoo	1.092														
795.0	26/7	Drake	1.107	1007237068	12	1.728	1036160199	1036160150									
795.0	36/1	Coot	1.040	1007237065	12	1.660	1036160199	1036160150			1	11					
795.0	45/7	Tern	1.063	1007237065	12	1.684	1036160199	1036160150			10/5	Conductor	Dueferment	Dada			
795.0	54/7	Condor	1.092						ACS	S	Code	Diameter	Armor Rod	Roas	with Armor Rod	Post Clamp	Post Clamp
795.0	30/19	Mallard	1.140						Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR
850.8	45/7	Heron	1.100		12	1.720			795.0	26/7	Drake/ACSS	1.107					
900.0	54/7	Canary	1.162		13	1.782											
954.0	45/7	Rail	1.165														
954.0	54/7	Cardinal	1.196		13	1.816											
1033.5	36/1	Tanager	1.186	1007237070	13	1.806	1036160199	1036160150			14/1-2	Conductor	Dueferreed	Dada			
1033.5	45/7	Ortolan	1.212	1007237075	12	1.943	1036160199	1036160150	AWL	D	Code	Diameter	Armor Rod	per	with Armor Rod	Post Clamp	Post Clamp
1033.5	54/7	Curlew	1.245	1007237075	12	1.976	1036160199	1036160150	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR
1113.0	45/7	Bluejay	1.258						3#6			0.349					
1192.5	45/7	Bunting	1.302	1007237077	12	2.032	1036160230	1036160150	7#10			0.306					
1192.5	54/19	Grackle	1.337	072-370-79	13	2.068	1036160230	1036160150	7#8 (3/8")			0.385			0.613		1036160057
1272.0	54/19	Pheasant	1.381	072-370-79	13	2.112	1036160230	1036160150	7#7 (7/16")			0.433			0.648		
1431.0	45/7	Bobolink	1.427			2.229	361-602-70	1036160150	7#6 (1/2")			0.486			0.689		
1431.0	54/19	Plover	1.465						19#10			0.509					
1590.0	45/7	Lapwing	1.502	072-370-80	12	2.374	361-602-70	1036160199	19#9			0.572					
1590.0	54/19	Falcon	1.544						19#8			0.642					
2156.0	84/19	Bluebird	1.762	1007237086	14	2.634	361-602-70	1036160199	19#5			0.910					
									6M			0.242					
									8M			0.272					
									12.5M			0.343					
									20M			0.444					

ACS	SR **	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR
101.8	12/7	Petrel	0.461					1036160057
134.6	12/7	Leghorn	0.530					
190.8	12/7	Dorking	0.631					1036160084
211.3	12/7	Cochin	0.663	1007236610	13	1.028	1036160150	1036160084

** These are high mechanical strength wires.

FOR ASSISTANC	E: CONTACT ENGINE	ERING ST - TRANSM	ANDARDS - TR	ANSMISS ON.	ION		
Contact Engine	ering Standards - Transm	nission for t	the creation of ne	ew standar	ds and CUs.	Drawing Scale:	N/A
IBERDROLA USA	IBERDROLA USA TRANSMISSION CONSTRUCTION STANDARDS MANUAL	TRA	NSMISSION CO POST INSL	ONDUCTO	R AND STAT TRUNNION) C	IC WIRE INFO CLAMPS	Revision 00 Date / /2014
Drwn. By: Date Dr.: L.A. Best 10/10/2012	Checked By: Shepard/Becken/Hart	Date Ck.: / /2014	Approved By Barry R. Hart	Date App.: / /2014	TM2.2	3.TJ-02-001	Sheet 2

THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY

 \bigcirc

 \bigcirc

 \bigcirc ANSI B 11" X 17"

Wine Olme	0	Wire Code	Conductor Diameter	Preformed Armor Rod	Rods Overall Diameter	MID for Post Clamp	MID for Post Clamp	CWL	D/CU	Wire Code	Conductor Diameter	Preformed Armor Rod	Rods	Overall Diameter with Armor Rod	MID for Post Clamp	MID for Post Clamp
wire Size	Stranding	Word	(inches)	MID	Set (inches)	over PAR	w/o PAR	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR
#6 MHD	Solid		0.162					1/0f	1/6		0.388					
#4 MHD	Solid		0.204					2/0f	1/6		0.436					
#3 MHD	Solid		0.229					4/0e	7/12		0.613					
#2 MHD	Solid		0.258					4/0ek	4/15		0.571					
#1 MHD	Solid		0.289													
#2	Solid		0.2576					2a	1/2		0.366					
1/0	Solid		0.3249					2f	1/6		0.308					
2/0	Solid		0.3648					4a	1/2		0.290					
4/0	Solid		0.460					7a	1/2		0.223					
								7d	2/1		0.246					
#3	0/1		0.2294													
#4	0/3		0.254					STEEL		Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
#2	0/3		0.320							Code	Diameter	Armor Rod	per	with Armor Rod	Post Clamp	Post Clamp
#1	0/3		0.360					Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	over PAR	w/o PAR
								1/4	3		0.2586					
#4 HD	0/7		0.232					5/16 **	3		0.312					1036167057
#3	0/7		0.260					5/16 **	7		0.312					1036167057
#2 HD	0/7		0.292					3/8	7		0.360	1007243005	12	0.560	1036167084	1036167057
#1 HD	0/7		0.328					7/16	7		0.435	1007243013	12	0.675	1036167084	1036167057
1/0	0/7		0.368					1/2	7		0.495	1007243015	12	0.767	1036167084	1036167057
2/0 HD	0/7		0.414	1007237505	10 0.700	1036167084	1036167057	9/16	7		0.564	072-430-20	12			1036167084
3/0 HD	0/7		0.464					9/16	19		0.565					1036167084
4/0 HD	0/7		0.522													
	0/10		0.528				1036167057									
300.0	0/19		0.520				1036167084	** 5/16" 19 (
350.0	0/19		0.629				1000107004	3/10 13 3	ODGOLLIL -		IS / SINCIL					
00010	0/10															
			0.0.0													
CW	/LD	тург	Conductor	Preformed	Rods Overall Diameter	MID for	MID for									
CW Wire Size	/LD Stranding	ТҮРЕ	Conductor Diameter (inches)	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR									
CW Wire Size #2	/LD Stranding Solid	TYPE	Conductor Diameter (inches) 0.2576	Preformed Armor Rod MID	Rods per Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR									
CW Wire Size #2 3#8	/LD Stranding Solid 3	TYPE 40% HS 30% EHS	Conductor Diameter (inches) 0.2576 0.277	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR									
CW Wire Size #2 3#8 3#7	/LD Stranding Solid 3 3	TYPE 40% HS 30% EHS 30% EHS	Conductor Diameter (inches) 0.2576 0.277 0.311	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR									
CW Wire Size #2 3#8 3#7 3#6	/LD Stranding Solid 3 3 3	TYPE 40% HS 30% EHS 30% EHS 30% EHS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057									
CW Wire Size #2 3#8 3#7 3#6 7#10	/LD Stranding Solid 3 3 3 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057									
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9	/LD Stranding Solid 3 3 3 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057									
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8")	/LD Stranding Solid 3 3 3 7 7 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057									
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057									
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7 19#5 (7/8")	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 7 7 7 19	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches) Image: Set Image: Set Image: Set I	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106									
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7 19#5 (7/8") 6M	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 7 7 7 19 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910 0.237	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches)	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106	EOP AS	SISTANCE	CONTACT			99 - TE	ΔΝΙζΜΙζζΙΟΝ		
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7 19#5 (7/8") 6M 8M	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 7 7 7 19 7 19 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910 0.237 0.276	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches) Image: Set Image: Set Image: Set Image: Set <td>MID for Post Clamp over PAR</td> <td>MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106</td> <td>FOR AS OR FLF</td> <td>SISTANCE:</td> <td></td> <td>ENGINEERII FERING - TR</td> <td>NG STANDARD</td> <td>DS - TF</td> <td>RANSMISSION</td> <td></td> <td></td>	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106	FOR AS OR FLF	SISTANCE:		ENGINEERII FERING - TR	NG STANDARD	DS - TF	RANSMISSION		
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7 19#5 (7/8") 6M 8M 12.5M	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 7 7 19 7 19 7 7 7 7 7 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.276 0.345	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches) Image: Set Image: Set Image: Set Image: Set <td>MID for Post Clamp over PAR</td> <td>MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106</td> <td>FOR AS OR ELE</td> <td>SISTANCE: CTRIC SYST</td> <td>CONTACT TEM ENGIN</td> <td>ENGINEERIN EERING - TR</td> <td>NG STANDARD ANSMISSION</td> <td>DS - TR SECTI</td> <td>RANSMISSION ON.</td> <td></td> <td>wing Scale: N</td>	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106	FOR AS OR ELE	SISTANCE: CTRIC SYST	CONTACT TEM ENGIN	ENGINEERIN EERING - TR	NG STANDARD ANSMISSION	DS - TR SECTI	RANSMISSION ON.		wing Scale: N
CW Wire Size #2 3#8 3#7 3#6 7#10 7#8 (3/8") 7#8 (3/8") 7#7 19#5 (7/8") 6M 8M 12.5M	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 19 7 7 7 7 7 7 7 7 7 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches) Image: Set Image: Set Image: Set Image: Set <td>MID for Post Clamp over PAR</td> <td>MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106</td> <td>FOR AS OR ELE Conta</td> <td>SISTANCE: CTRIC SYST</td> <td>CONTACT FEM ENGIN g Standards BERDROLA</td> <td>ENGINEERII EERING - TR - Transmissio USA</td> <td>NG STANDARD ANSMISSION on for the creation</td> <td>DS - TF SECTI on of no</td> <td>RANSMISSION ON. ew standards and C</td> <td>CUs. Dra</td> <td>wing Scale: N</td>	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106	FOR AS OR ELE Conta	SISTANCE: CTRIC SYST	CONTACT FEM ENGIN g Standards BERDROLA	ENGINEERII EERING - TR - Transmissio USA	NG STANDARD ANSMISSION on for the creation	DS - TF SECTI on of no	RANSMISSION ON. ew standards and C	CUs. Dra	wing Scale: N
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7 19#5 (7/8") 6M 8M 12.5M	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 7 19 7 7 7 7 7 7 7 7 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches) Image: Set Image: Set Image: Set Image: Set <td>MID for Post Clamp over PAR</td> <td>MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106</td> <td>FOR AS OR ELE Conta</td> <td>SISTANCE: CTRIC SYST ct Engineerin;</td> <td>CONTACT TEM ENGIN g Standards BERDROLA TRANSMIS</td> <td>ENGINEERIN EERING - TR - Transmissio USA SION</td> <td>NG STANDARD ANSMISSION on for the creation TRANSMISSI</td> <td>OS - TF SECTI On of no ON CO</td> <td>ANSMISSION ON. ew standards and C ONDUCTOR AND JLATOR (TRUNNI</td> <td>CUs. Dra STATIC WIRE ON) CLAMPS</td> <td>wing Scale: N/</td>	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106	FOR AS OR ELE Conta	SISTANCE: CTRIC SYST ct Engineerin;	CONTACT TEM ENGIN g Standards BERDROLA TRANSMIS	ENGINEERIN EERING - TR - Transmissio USA SION	NG STANDARD ANSMISSION on for the creation TRANSMISSI	OS - TF SECTI On of no ON CO	ANSMISSION ON. ew standards and C ONDUCTOR AND JLATOR (TRUNNI	CUs. Dra STATIC WIRE ON) CLAMPS	wing Scale: N/
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7 19#5 (7/8") 6M 8M 12.5M	/LD Stranding Solid 3 3 3 7 7 7 7 7 7 19 7 7 7 7 7 7 7 7 7 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches) Image: Set Image: Set Image: Set Image: Set <td>MID for Post Clamp over PAR</td> <td>MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106</td> <td>FOR AS OR ELE Conta</td> <td>SISTANCE: CTRIC SYST ct Engineerin</td> <td>CONTACT TEM ENGIN g Standards BERDROLA TRANSMISE CONSTRUC</td> <td>ENGINEERII EERING - TR - Transmissio USA SION TION</td> <td>NG STANDARD ANSMISSION on for the creatio TRANSMISSIO POST</td> <td>DS - TF SECTI on of no ON CO ' INSU</td> <td>RANSMISSION ON. ew standards and C ONDUCTOR AND JLATOR (TRUNNI</td> <td>CUs. Dra STATIC WIRE ON) CLAMPS</td> <td>wing Scale: N/ INFO F</td>	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106	FOR AS OR ELE Conta	SISTANCE: CTRIC SYST ct Engineerin	CONTACT TEM ENGIN g Standards BERDROLA TRANSMISE CONSTRUC	ENGINEERII EERING - TR - Transmissio USA SION TION	NG STANDARD ANSMISSION on for the creatio TRANSMISSIO POST	DS - TF SECTI on of no ON CO ' INSU	RANSMISSION ON. ew standards and C ONDUCTOR AND JLATOR (TRUNNI	CUs. Dra STATIC WIRE ON) CLAMPS	wing Scale: N/ INFO F
CW Wire Size #2 3#8 3#7 3#6 7#10 7#9 7#8 (3/8") 7#7 19#5 (7/8") 6M 8M 12.5M	/LD Stranding Solid 3 3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TYPE 40% HS 30% EHS 30% EHS 30% EHS 40% HS 40% HS 40% HS 40% HS	Conductor Diameter (inches) 0.2576 0.277 0.311 0.349 0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345	Preformed Armor Rod MID	Rods Overall Diameter per with Armor Rod Set (inches) Image: Set Image: Set Image: Set Image: Set <td>MID for Post Clamp over PAR</td> <td>MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106</td> <td>FOR AS OR ELE Conta</td> <td>SISTANCE: CTRIC SYST ct Engineerin</td> <td>CONTACT TEM ENGIN g Standards BERDROLA TRANSMIS CONSTRUC STANDAR MANUA</td> <td>ENGINEERII EERING - TR - Transmissio USA SION TION DS</td> <td>NG STANDARD ANSMISSION on for the creation TRANSMISSIO POST</td> <td>DS - TF SECTI on of no ON CO - INSU</td> <td>RANSMISSION ON. ew standards and C ONDUCTOR AND JLATOR (TRUNNI</td> <td>CUs. Dra STATIC WIRE ON) CLAMPS</td> <td>wing Scale: N/ INFO F</td>	MID for Post Clamp over PAR	MID for Post Clamp w/o PAR 1036167057 1036167057 1036167106	FOR AS OR ELE Conta	SISTANCE: CTRIC SYST ct Engineerin	CONTACT TEM ENGIN g Standards BERDROLA TRANSMIS CONSTRUC STANDAR MANUA	ENGINEERII EERING - TR - Transmissio USA SION TION DS	NG STANDARD ANSMISSION on for the creation TRANSMISSIO POST	DS - TF SECTI on of no ON CO - INSU	RANSMISSION ON. ew standards and C ONDUCTOR AND JLATOR (TRUNNI	CUs. Dra STATIC WIRE ON) CLAMPS	wing Scale: N/ INFO F

THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY

ANSI B 11" X 17"

ARDS - TRANSM		ON		
ON SECTION.				
eation of new star	ndaro	ds and CUs.	Drawing Scale:	N/A
SSION CONDUC	CTO R (T	R AND STAT RUNNION) C	IC WIRE INFO CLAMPS	Revision 00 Date / /2014
roved By: Date A y R. Hart / /20	.pp.:)14	TM2.2	3.TJ-02-001	Sheet 3

		Clamp, T	runnion (P	ost), Alumin	um, Tange	ent and	Angles to	15°	
	NYSEG MID	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)
~~	1036160057			TSC-57	0.25 - 0.57	2,800	ACTS-057	0.25 - 0.57	<u> </u>
()	1036160084			TSC-86	0.35 - 0.86	2,800	ACTS-084	0.35 - 0.84	
	1036160106			TSC-106	0.50 - 1.06	2,800	ACTS-118	0.50 - 1.18	
	1036160150			TSC-150	1.00 - 1.50	2,800	ACTS-150	0.93 - 1.50	
	1036160199	6000111371		TSC-200	1 50 - 2.00	2.800	ACTS-200	1 50 - 2.00	
	1036160230					,	ACTS-230	1 90 - 2 30	
	361-602-70			-			ACTS-270	2 00 - 2.70	
	001 002			+ +					
			unnion (Po		Iron Tang	iont and		. 150	
			unnion (ro	St), Ducule	Iron, Tany	ent anu	Angles to	15	
	NYSEG MID	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)
	1036167057			2706503001	0.25 - 0.56	2,800	LPS-57-F	0.25 - 0.57	
	1036167084						LPS-86-F	0.35 - 0.86	
	1036167106			2706513001	0.50 - 1.06	2,800	LPS-118	0.50 - 1.18	
	361-671-50			2706523001	1.06 - 1.50	2,800	LPS-150	0.93 - 1.50	
	361-671-99	Lapp 47105-S2	1.50 - 2.00						
\bigcirc		Clamp,	Trunnion (I	Post), Bronz	ze, Tangen	t and A	Ingles to 1	5°	
	NYSEG MID	CMP MID	RG&E MID	HUBBELL PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)	MACLEAN PART NO.	Wire Diameter Range (inches)	Ultimate Strength (pounds)
۲							LPS-57-B	0.25 - 0.57	
AL							LPS-86-B	0.35 - 0.86	
AT NU									
THIS IS A COMPUTER GENER. DRAWING - DO NOT REVISE MA	FOR ASSIST OR ELECTRI	ANCE: CONTA	ACT ENGINEE GINEERING -	RING STANDA TRANSMISSIC	NRDS - TRANS	SMISSION			
	Contact Eng	jineering Standar	rds - Transmiss	ion for the creati	ion of new stand	dards and (CUs. [Drawing Scale:	N/A
$\langle \gamma \rangle$		IBERDRO	OLA USA	TRANSMISSIC	N CONDUCT	FOR AND	STATIC WIF	RE DETAILS	Revision
、!	9999			POS	T INSULATO	R (TRUN	NION) CLAMI	<u> 28</u>	00
11"	IBERDRO					CHARACT	FRISTICS		DATE
~			UARDS I		FILISICAL		2.40.100		
'× I	USA			AL	<u>UMINU</u> M, DU	<u>ICTILE</u> IR	ON, BRONZE	Ē	/ /2014
ANSI /	USA Drwn. By: Date I	Dr.: Check	NUAL	AL Date Ck.: Appr	UMINUM, DU	JCTILE IR	ON, BRONZE		/ /2014

		Arm	or R	ods:	ALUM	1INU	M			For use AW	For use on ACSR, Compacted ACSR, Aluminum Alloy All-Aluminum, AWAC Compacted All-Aluminum, ACAR, ACSS (AW & TW)					
	Preformed Armor Rod	Preformed Armor Rod	Range	(inches)	Rod Diameter	Rod L (inc	ength. hes)	Rods per	Color Code	Preformed Line Products	Preformed Line Products	Helical Line Products	Helical Line Products	NYSEG P/N Preformed	NYSEG P/N Helical	
┝	Single	Double	Lower			3		Jei	DL	3		5			Line Products	
┢			0.194	0.207	0.121	40	52		Blue	AR-0106	AR-0306	AAR-510	AAR-610			
┢			0.208	0.219	0.121	40	52		Black	AR-0107	AR-0307	AAR-511	AAR-611			
┢			0.220	0.227	0.121	40	52	8	VVNIte	AR-0108	AR-0308	AAR-512	AAR-612			
\vdash			0.229	0.243	0.121	40	52	0	Orango	AR-0109	AR-0309	AAR-513	AAR-013			
\vdash			0.244	0.259	0.140	40	52	7	Crase	AR-0110	AR-0310	AAR-514	AAR-014			
\vdash			0.260	0.273	0.140	42	54	/	Green		AR-0311	AAR-515	AAR-015			
┢			0.274	0.209	0.140	42	54	0	Purple	AR-0112	AR-0312	AAR-510	AAR-010			
┢	22.0050	22,0090	0.290	0.300	0.140	42	54	0	Pod	AR-0113	AR-0313	AAR-517	AAR-017			
┢	22-0050	22-0060	0.309	0.320	0.130	44	50	9	Plue	AR-0114	AR-0314	AAR-310	AAR-010			
\vdash			0.327	0.340	0.140	40	60	9	Groop	AR-0115	AR-0315	AAR-519	AAR-019			
\vdash			0.347	0.300	0.140	40 50	62	10	Block	AR-0110	AR-0310	AAR-520	AAR-020			
\vdash	750071		0.307	0.309	0.140	50	64				AR-0317		AAR-021			
\vdash	752671		0.390	0.413	0.107	52	64	10	Brown	AR-0110	AR-0310	AAR-522	AAR-022			
\vdash	22 0170		0.414	0.430	0.140	52	66	10	Blue	AR-0119	AR-0319					
\vdash	22-0170		0.437	0.403	0.107	54	66	10	Groop							
\vdash	1007235400	072-354-01	0.404	0.430	0.167	56	68		Orande	ΔR-0122	ΔR-0322	ΔΔR-526	ΔΔR-626			
\vdash	1007200400	072-004-01	0.522	0.521	0.167	58	70		Black	AR-0123	AR-0323	ΔΔR-527	ΔΔR-627			
	1007235505	1007235506	0.552	0.585	0.182	60	72		Red	AR-0123	AR-0324	AAR-528	AAR-628			
\vdash	1007200000	1007200000	0.586	0.606	0.182	62	74	12	Black	AR-0125	AR-0325	AAR-529	AAR-629			
\vdash	22-0290		0.607	0.630	0.182	64	76	12	Purple	AR-0126	AR-0326	AAR-530	AAR-630			
\vdash	22-0320		0.631	0.655	0.182	64	76	12	Yellow	AR-0127	AR-0327	AAR-531	AAR-631			
h	1007236610		0.656	0.679	0.182	66	78	13	Brown	AR-0128	AR-0328	AAR-532	AAR-632	AR-MS-9248	60-AAR-432	
b	1007236620		0.680	0.703	0.204	68	80	12	Blue	AR-0129	AR-0329	AAR-533	AAR-633	AR-MS-5409	60-AAR-433	
b	1007236630	22-0380 (s)	0.704	0.740	0.204	72	84	12	Green	AR-0130	AR-0342	AAR-534	AAR-634	AR-MS-6871	60-AAR-434	

THIS IS A COMPUTER GENERATED DRAWING - DO											
Contact System Engineering - Transmission Section for the cre											
IBERDROLA USA	TRANSMISSION CONSTRUCTION STANDARDS MANUAL TM.2.23	TRANSM	IISSION								
Drwn. By: Date Dr.:	Checked By:	Date Ck.:	Approv								
L.A. Best 8/30/2012	2	/ /2012	Barry F								

NGLE SUPPORT OUBLE SUPPORT CONTACT PLP IF THE MAXIMUM DISTANCE BETWEEN DOUBLE SUPPORTS EXCEEDS 12" ON DOUBLE CROSSARM CONSTRUCTION)

SSISTANCE: ONTACT SYSTEM ENGINEERING - TRANSMISSION SECTION.

PE SEAL	
reation of new standards and CUs. Drawing Scale: N	I/A
N CONDUCTOR AND STATIC RELATED DETAILS	ISSUE
PREFORMED ARMOR RODS	0 DATE / /2012
oved By: Date App.: / R. Hart / /2012 TJ-05-001	Sheet 1

	1									Foruso		ompacted AC	SR Alumini	
		۸ ۲۰۰۰		adar		/INII	IN <i>1</i>			All-Aluminum, AWAC Compacted All-Aluminum,				
		Am	OFR	ous.	ALUIV		IVI				AĆAR	, ACSS (ÁW	& TW)	,
	Preformed Armor Rod	Preformed Armor Rod	Range	(inches)	Rod Diameter	Rod L (inc	_ength hes)	Rods per	Color	Preformed Line Products	Preformed Line Products	Helical Line Products	NYSEG P/N Preformed	NYSEG P/N Helical
	'Single'	'EHV'	Lower	Upper	(inches)	'S'	'D'	Set	Code	'S'	'EHV'	'S'	Line Products	Line Products
60	1007236640	22-0350 (S)	0.741	0.782	0.204	72	N/A	13	Orange	AR-0131		AAR-535	AR-MS-6691	60-AAR-435
60	1007237020	22-0410 (S)	0.783	0.814	0.250	76	N/A	11	Purple	AR-0132		AAR-536	AR-MS-5407	60-AAR-436
			0.815	0.845	0.250	76	N/A	11	Red	AR-0133		AAR-537		
60	1007237026		0.846	0.907	0.250	78	N/A	12	Blue	AR-0134		AAR-538	AR-MS-5408	60-AAR-438
			0.908	0.929	0.250	80	N/A	13	Green	AR-0135		AAR-539		
			0.930	0.976	0.250	88	N/A	13	White	AR-0136		AAR-540		
			0.977	1.016	0.310	92	N/A	11	Yellow	AR-0137	AR-0500	AAR-541		
60	1007237060		1.017	1.035	0.310	94	N/A	12	Brown	AR-0138	AR-0501	AAR-542	AR-MS-6249	60-AAR-442
60	1007237065	22-0440 (S)	1.036	1.064	0.310	96	N/A	12	Blue	AR-0139	AR-0502	AAR-543	AR-MS-5808	60-AAR-443
			1.065	1.098	0.310	96	N/A	12	Green	AR-0140	AR-0503	AAR-544		
60	1007237068	22-0470 (S)	1.099	1.139	0.310	100	N/A	12	Orange	AR-0141	AR-0504	AAR-545	AR-MS-5860	60-AAR-445
			1.140	1.161	0.310	100	N/A	13	Purple	AR-0142	AR-0505	AAR-546		
60	1007237070	22-0480 (S)	1.162	1.208	0.310	100	N/A	13	Red	AR-0143	AR-0506	AAR-547	AR-MS-5410	60-AAR-447
60	1007237075	22-0490 (S)	1.209	1.269	0.365	100	N/A	12	Black	AR-0144	AR-0507	AAR-548	AR-MS-5411	60-AAR-448
60	1007237077	22-0500 (S)	1.270	1.327	0.365	100	N/A	12	White	AR-0145	AR-0508	AAR-549	AR-MS-6815	60-AAR-449
60	1007237079		1.328	1.390	0.365	100	N/A	13	Yellow	AR-0146	AR-0509	AAR-550	AR-MS-9537	60-AAR-450
			1.391	1.440	0.436	100	N/A	11	Brown	AR-0147	AR-0510	AAR-551		
60	072-370-80		1.441	1.508	0.436	100	N/A	12	Blue	AR-0163	AR-0511	AAR-552	AR-MS-6261	60-AAR-452
			1.509	1.578	0.436	100	N/A	12	Green	AR-0164	AR-0512	AAR-553		
			1.579	1.651	0.436	100	N/A	13	Orange	AR-0165	AR-0513	AAR-554		
			1.652	1.728	0.436	100	N/A	13	Purple	AR-0166	AR-0514	AAR-555		
	1007237086		1.729	1.809	0.436	100	N/A	14	Red	AR-0167	AR-0516	AAR-556		
			1.810	1.898	0.436	100	N/A	14	Black	AR-0168	AR-0517	AAR-557		
			1.899	1.991	0.436	100	N/A	15	White	AR-0169	AR-0518			
			1.992	2.090	0.436	100	N/A	15	Yellow	AR-0170	AR-0519			
			2.091	2.193	0.468	100	N/A	15	Brown	AR-0171	AR-0520			
60	072-370-87		1.209	1.269									AR-MS-6905	
78	1007237090		1.729	1.809									AR-MS-5240	

Contact System Engineering - Transmission Section for the cre										
TRANSMISSION TRANSMISSIO	ON									
BERDROLA STANDARDS										
USA MANUAL TM.2.23										
Drwn. By: Date Dr.: Checked By: Date Ck.: App	orov									
L.A. Best 8/30/2012 / /2012 Ban	ry R									

'S' = SINGLE SUPPORT 'D' = DOUBLE SUPPORT (CONTACT PLP IF THE MAXIMUM DISTANCE BETWEEN DOUBLE SUPPORTS EXCEEDS 12" ON DOUBLE CROSSARM CONSTRUCTION)

FOR ASSISTANCE: CONTACT SYSTEM ENGINEERING - TRANSMISSION SECTION.

O NOT REVISE MANUALLY	PE SEAL				
reation of new standards and CUs.	Drawing Scale: N/A				
N CONDUCTOR AND STATIC	RELATED DETAILS	ISSUE			
PREFORMED ARMOR ROD	S	0			
		DATE			
		/ /2012			
ved By: Date App.: R. Hart / /2012	-05-001	Sheet 2			

Arm	ior Rod	s: Al		For use on Aluminum-Clad Steel Strands								
Preformed Armor Rod	Preformed Armor Rod	Range	(inches)	Rod Diameter	Rod Length (inches)		Rods per	Color	Preformed Line Products	Preformed Line Products	Helical Line Products	Helical Line Products
'Single'	'Double'	Lower	Upper	(inches)	'S'	'D'	Set	Set Code	'S'	'D'	'S'	'D'
		0.169	0.178	0.102	40	52	7	Orange	AR-2113	AR-2313	AWAR-510	AWAR-610
		0.196	0.207	0.102	40	52	7	Black	AR-2116	AR-2316	AWAR-513	AWAR-613
		0.218	0.225	0.102	40	52	8	Green	AR-2118	AR-2318	AWAR-515	AWAR-615
		0.237	0.249	0.102	40	52	9	Yellow	AR-2120	AR-2320	AWAR-517	AWAR-617
		0.264	0.277	0.114	42	54	9	Blue	AR-2122	AR-2322	AWAR-519	AWAR-619
		0.296	0.314	0.114	46	58	9	Black	AR-2124	AR-2324	AWAR-521	AWAR-621
		0.334	0.352	0.114	50	62	10	Yellow	AR-2126	AR-2326	AWAR-523	AWAR-623
		0.373	0.392	0.128	50	62	10	Orange	AR-2128	AR-2328	AWAR-525	AWAR-625
		0.409	0.425	0.128	54	66	11	Black	AR-2130	AR-2330	AWAR-526	AWAR-626
		0.426	0.450	0.128	56	68	12	Green	AR-2131	AR-2331	AWAR-528	AWAR-628
		0.477	0.504	0.144	56	68	11	Blue	AR-2133	AR-2333	AWAR-530	AWAR-630
		0.535	0.565	0.162	60	72	12	Yellow	AR-2135	AR-2335	AWAR-532	AWAR-632
		0.593	0.625	0.183	60	72	11	Black	AR-2137	AR-2337	AWAR-534	AWAR-634

'S' = SINGLE SUPPORT 'D' = DOUBLE SUPPORT

FOR ASSISTANCE: CONTACT SYSTEM ENGINEERING - TRANSMISSION SECTION.

A	rmor R	ods:	For use on	Steel Reinfo with Righ	rced Copper t-Hand lay	Conductors						
Preformed Armor Rod 'Single'	Preformed Armor Rod 'Double'	Range	(inches)	Rod Diameter	Rod L (inc	_ength hes)	Rods per	Color	Preformed Line Products	Preformed Line Products	Helical Line Products	Helical Line Products
		Lower	Upper	(inches)	'S'	'D'	Set	Code	'S'	'D'	'S'	'D'
		0.244	0.259	0.070	40	52	12	Orange	AR-1154	AR-1354		
		0.309	0.326	0.086	44	56	12	Red	AR-1158	AR-1358	GAR-576	GAR-676
		0.347	0.373	0.086	48	60	13	Black	AR-1160	AR-1360	GAR-578	GAR-678
		0.390	0.413	0.100	52	64	13	Yellow	AR-1162	AR-1362	GAR-580	GAR-680
		0.437	0.463	0.119	54	66	12	Blue	AR-1164	AR-1364	GAR-582	GAR-682
		0.491	0.521	0.119	56	68	13	Orange	AR-1166	AR-1366	GAR-584	GAR-684
		0.552	0.585	0.138	60	72	13	Red	AR-1168	AR-1368	GAR-586	GAR-686

	Armo	Armor Rods: GALVANIZED STEEL													
	Preformed Armor Rod	Range	(inches)	Rod Diameter	Rod L (incl	ength nes)	Rods per	Color	Preformed Line Products	Helical Line Products					
	'Single'	Lower	Upper	(inches)	'S'	'D'	Set	Code	'S'	'S'					
		0.229	0.243	0.086	40	N/A	10	Black	AR-1123						
		0.244	0.259	0.086	40	N/A	10	Yellow	AR-1124	GAR-524					
		0.309	0.326	0.100	44	N/A	11	Black	AR-1128	GAR-526					
40 [1007243005	0.347	0.373	0.100	48	N/A	12	Orange	AR-1130	GAR-528					
	1007243013	0.414	0.436	0.119	52	N/A	12	Green	AR-1133	GAR-531					
44 [1007243015	0.491	0.521	0.138	56	N/A	12	Blue	AR-3139	GAR-534					

(CONTACT PLP IF THE MAXIMUM DISTANCE BETWEEN DOUBLE SUPPORTS EXCEEDS 12" ON DOUBLE CROSSARM CONSTRUCTION)

O NOT REVISE MANUALLY	PE SEAL				
reation of new standards and CUs.	Drawing Scale: N/A				
N CONDUCTOR AND STATIC	RELATED DETAILS	ISSUE			
PREFORMED ARMOR ROD	S	0			
		DATE			
		/ /2012			
ved By: Date App.: R. Hart / /2012	-05-001	Sheet 3			

	Armor	Rod	s: C	For use Co	e on Copperv pperweld/Co	veld Strand, (pper Compos	Copper site					
Preformed Armor Rod	Preformed Armor Rod	Range	(inches)	Rod Diameter	Rod L (inc	Length hes)	Rods per	Color Code	Preformed Line Products	Preformed Line Products	Helical Line Products	Helical Line Products
Single	'Double'	Lower	Upper	(Inches)	'S'	'S' 'D'	Set		'S'	.D.	'S'	'D'
		0.106	0.168	0.102	38	50	7	Green	AR-5100	AR-5300	CAR-503	CAR-603
		0.169	0.178	0.102	40	52	7	Red	AR-5101	AR-5301	CAR-504	CAR-604
		0.179	0.188	0.102	40	52	7	Black	AR-5102	AR-5302	CAR-505	CAR-605
		0.196	0.207	0.102	40	52	7	Gray	AR-5104	AR-5304	CAR-507	CAR-607
		0.218	0.225	0.102	40	52	8	Red	AR-5106	AR-5306	CAR-508	CAR-608
		0.226	0.236	0.102	40	52	8	Black	AR-5107	AR-5307	CAR-510	CAR-610
		0.237	0.249	0.102	42	54	9	Blue	AR-5108	AR-5308	CAR-511	CAR-611
		0.250	0.263	0.102	42	54	9	Gray	AR-5109	AR-5309	CAR-512	CAR-612
		0.264	0.277	0.102	42	54	9	Green	AR-5110	AR-5310	CAR-513	CAR-613
		0.278	0.295	0.102	42	54	10	Red	AR-5111	AR-5311	CAR-514	CAR-614
		0.296	0.314	0.114	44	56	9	Black	AR-5112	AR-5312	CAR-515	CAR-615
		0.315	0.333	0.128	46	58	9	Blue	AR-5113	AR-5313	CAR-516	CAR-616
		0.334	0.352	0.128	48	60	9	Gray	AR-5114	AR-5314	CAR-517	CAR-617
072-375-04		0.353	0.372	0.128	50	62	10	Green	AR-5115	AR-5315	CAR-518	CAR-618
		0.373	0.392	0.144	52	64	9	Red	AR-5116	AR-5316	CAR-519	CAR-619
1007237505		0.409	0.425	0.144	54	66	10	Blue	AR-5118	AR-5318	CAR-521	CAR-621
		0.426	0.450	0.162	54	66	10	Gray	AR-5119	AR-5319	CAR-522	CAR-622
		0.451	0.476	0.162	56	68	10	Green	AR-5120	AR-5320	CAR-523	CAR-623
		0.477	0.504	0.162	56	68	11	Red	AR-5121	AR-5321	CAR-524	CAR-624
		0.505	0.534	0.162	58	70	11	Black	AR-5122	AR-5322	CAR-525	CAR-625
		0.535	0.565	0.162	58	70	12	Blue	AR-5123	AR-5323	CAR-526	CAR-626
		0.566	0.592	0.162	60	72	12	Gray	AR-5124	AR-5324	CAR-527	CAR-627
		0.593	0.625	0.162	60	72	13	Green	AR-5125	AR-5325	CAR-528	CAR-628

Ar	mor Ro	ods: F	Co	For use o pperweld/Co	on Copper pper Compos	site						
Preformed Armor Rod	Preformed Armor Rod	Range (inches)		Rod Diameter	Rod L (inc	Rod Length (inches)		Color	Preformed Line Products	Preformed Line Products	Helical Line Products	Helical Line Products
'Single'	'Double'	Lower	Upper	(inches)	'S'	'D'	Set	Code	'S'	'D'	'S'	'D'
		0.160	0.168	0.099	38	50	7	Green	ARB-1103	ARB-1303		
		0.169	0.178	0.099	40	52	7	Red	ARB-1104	ARB-1304		
		0.179	0.188	0.099	40	52	7	Black	ARB-1105	ARB-1305		
		0.196	0.207	0.099	40	52	8	Gray	ARB-1107	ARB-1307		
		0.218	0.225	0.099	40	52	8	Red	ARB-1109	ARB-1309		
		0.226	0.236	0.099	40	52	8	Black	ARB-1110	ARB-1310		
		0.237	0.249	0.099	42	54	9	Blue	ARB-1111	ARB-1311		
		0.250	0.263	0.099	42	54	9	Gray	ARB-1112	ARB-1312		
		0.264	0.277	0.099	42	54	9	Green	ARB-1113	ARB-1313		
		0.278	0.295	0.099	42	54	10	Red	ARB-1114	ARB-1314		
		0.296	0.314	0.111	44	56	9	Black	ARB-1115	ARB-1315		

Contact System	Engineering - Transmissio	n Section fo	or the cr
THIS IS A C	OMPUTER GENERATED	DRAWIN	G - DC
IBERDROLA USA	TRANSMISSION CONSTRUCTION STANDARDS MANUAL TM.2.23	TRANSM	IISSION
Drwn. By: Date Dr.	Checked By:	Date Ck.:	Appro
L.A. Best 8/30/2012		/ /2012	Barry

'S' = SINGLE SUPPORT 'D' = DOUBLE SUPPORT (CONTACT PLP IF THE MAXIMUM DISTANCE BETWEEN DOUBLE SUPPORTS EXCEEDS 12" ON DOUBLE CROSSARM CONSTRUCTION)

FOR ASSISTANCE: CONTACT SYSTEM ENGINEERING - TRANSMISSION SECTION.

reation of new standa	ards and CUs.	PE SEAL				
O NOT REVISE MA	NUALLY	Drawing Scale: N/A				
N CONDUCTOR A	ND STATIC	RELATED DETAILS	ISSUE			
PREFORMED	ARMOR ROD	S	0			
			DATE			
			/ /2012			
oved By: Date App.: / R. Hart / /2012	TJ	-05-001	Sheet 4			

CONDUCTOR ARE OVER 6000 STOCKBRIDGE DAMER CLAPS ON TO SHE CONDUCTOR STOCKBRIDGE CAME ON TO SHE CONDUCTOR 477 181 ACSR 0.81 1.117 1.727 CCT-TJ-DST-B8-CR 600321217 CCT-TJ-DST-B6-CX 1003312217 7785.2677 ACSR 1.107 1.727 CCT-TJ-DST-B8-CR 600321910 CCT-TJ-DST-B6-CX 1003312271 1132.6477 ACSR 1.228 1.988 X X CCT-TJ-DST-B6-CK 1003312271 1132.6477 ACSR 1.228 1.988 X X CCT-TJ-DST-B6-CK 1003312211 CCT-TJ-DST-B6-CK 1003312211 777.610 MOVED 0 0.435 0.693 CCT-TJ-DST-B8-CK 100321217 CCT-TJ-DST-B0-SH 103631211 CCT-TJ-DST-B0-SH 103631211 CCT-TJ-DST-B0-SH 103631211 CCT-TJ-DST-B0-SH 103631211 CCT-TJ-DST-B0-SH 103631211 CCT-TJ-DST-B0-SH 103631211 CCT-TJ-DST-B0-SH 1036312116 CCT-TJ-DST-B0-SH 1036312116 CCT-TJ-DST-B0-SH 1036312116 CCT-TJ-DST-B0-SH 1036312116 CCT-TJ-DST-B0-SH 1036312116 CCT-TJ-DST-B0-SH 1036312116 CCT-TJ-DST-B0-SH <th></th>										
CONDUCTOR call ion cut ion cut ion		BARE	CABLE DIAM	STO	OCKBRIDGE DAMPE	R CLAMP ON TO	STOCKBRI	DGE DAMPER CLAN	/P ON TO	ARMOR
Image: Section 2016 Mile Column 2017 Mile Column 2017 Mile Column 2017 Mile Column 2017 Column 2017<			OVER RODS	3	BARE CONDU		ŀ	RODS OVER CONDU	UCTOR	
1 471 141 ACSR 0.614 1.314 C*CT-LOST-B8-CE 1036312117 C*CT-LDST-B0-CK 1036312276 1 1795 247 ACSR 1.212 1.832 X X C*CT-LDST-B0-CK 10036312265 1 1133 457 ACSR 1.222 1.832 X X C*CT-LDST-B0-CK 10036312271 1 1134 577 ACSR 1.282 1.988 X X C*CT-LDST-B0-CK 103631271 1 1136 5577 ACSR 1.302 2.032 C*CT-LDST-B0-SK X C*CT-LDST-B0-SK 754435 1 13605 5419 ACSR 1.44 2.416 C*CT-LDST-B8-SK 1036312115 C*CT-LDST-B0-SK 754435 1 1.3631 2517 0.673 C*CT-LDST-B8-SK 1036312115 C*CT-LDST-B0-SK 1036312116 1 71/6* EH STEEL 0.435 0.673 C*CT-LDST-B8-SK 1036312113 C*CT-LDST-B0-SK 1036312116 1 1 1.036312116 1.036312116 C*CT-LDST-B0-SK 1036312116 1 1 1.036312116 1.0456 0.673 C*CT-LDST-B0-SK 1036312116 1		DIAM. (IN.)	(IN.)		CU	MID		CU	M	ID
195 287 ACSR 1.107 1.227 C*C1-JDS1-BB-CK 6000221910 C*C1-JDS1-BB-CK 1036312276 1113 457 ACSR 1.258 1.888 X C*C1-JDS1-BB-CK 1036312276 C*C1-JDS1-BB-CK 1036312276 1113 457 ACSR 1.268 1.626 2.032 C*C1-JDS1-BB-CK 1036312216 C*C1-JDS1-BB-CK 103631216 C*C1-JDS1-BB-CK 103631216<	477 18/1 AC	SR 0.814	1.314	C*CT	-TJ-DST-BB-C	B 1036312117	C*CT-T	I-DST-BO-CB	10363	12271
In 193 497 AUSR 1212 1332 2	795 26/7 AC	<u>SR 1.107</u>	1.727	<u>C*C1</u>	-IJ-DSI-BB-C	<u>x 6000221910</u>		-DST-BO-CX	10363	12265
ID3 F30/7A26 I2302 CCT-TJ_0ST-BB-CL 1003312217 CCT-TJ_0ST-BB-CL 1003312175 CCT-TJ_0ST-BD-SL 1003312175 CCT-TJ_0ST-BD-SL 1003312175 CCT-TJ_0ST-BD-SL 1003312175 CCT-TJ_0ST-BD-SL 1003612175 CCT-TJ_0ST-BD-SL 1003612175 CCT-TJ_0ST-BD-SL 1003612175 CCT-TJ_0ST-BD-SL 1003612176 CCT-TJ_0ST-BD-SL CCT-TJ_0ST-BD-SL CCT-TJ_0ST-BD-SL CCT-TJ_0ST-BD-SL CCT-TJ_0ST-BD-SL CCT-TJ_0	1033 45/7 AC	SR 1.212	1.832		<u>X</u> V			I-DST-BO-CF	10363	12276
Image: State of the state	1102 5 15/7 A	CSR 1.200	2 032			<u> </u>		LDST-BO-CK	754	136
Ziel ALUMOWELD 0.336 0.641 C*CT-TJ-DST-BB-SE 1036312116 C*CT-TJ-DST-BB-SL 1036312117 Zier ALUMOWELD 0.336 0.673 C*CT-TJ-DST-BB-SH 1036312113 C*CT-TJ-DST-B0-SH 1036312116 Zier ALUMOWELD 0.435 0.673 C*CT-TJ-DST-BD-SH 1036312116 C*CT-TJ-DST-BD-SH 1036312116 Zier ALUMOWELD DAST ALUMOWELD AL	1590 54/19 A	CSR 1.502	2.032		-T.I-DST-BB-C	6000221972	C*CT-T	I-DST-BO-CK	60002	21973
7#7 ALUMOWELD 0.433 0.6693 C*CT-TJ-DST-BB-SH 1036312113 C*CT-TJ-DST-BO-SH 1036312116 7/16* EH STEEL 0.433 0.673 C*CT-TJ-DST-BB-SH 1036312113 C*CT-TJ-DST-BO-SH 1036312116 Image: Comparison of the standard standard standard standard standard standard standard standard standards Image: Comparison of the standard s	7#8 ALUMOV	VELD 0.385	0.641		-TJ-DST-BB-S	L 1036312115	C*CT-T	J-DST-BO-SL	754	435
7/16" EH STEEL 0.435 0.673 CCH19-DS1-BD-SH 1030312113 CCH19-DS1-BD-SH 1030312113 Image: Construction of the construction of the creation of new standards and CUs D BACK SPAN AHEAD SPAN Image: Construction of the creation of new standards and CUs D BACK SPAN AHEAD SPAN Image: Construction of the creation of new standards and CUs D A C Image: Construction of the creation of new standards and CUs D D A Image: Construction of the creation of new standards and CUs D D D Image: Construction of the creation of new standards and CUs D D D Image: Construction of the creation of new standards and CUs Drawing Scale: NA Image: Construction of the creation of new standards and CUs Drawing Scale: NA Image: Construction of the creation of new standards and CUs Drawing Scale: NA Image: Construction of the creation of new standards and CUs Drawing Scale: NA Image: Construction of the creation of new standards and CUs Drawing Scale: NA Image: Construction of the creation of new standards and CUs Drawing Scale: NA Image: Construction of the creation of new standards and CUs Drawing Scale: NA	7#7 ALUMOV	VELD 0.433	0.689	C*CT		1 1026212112			10262	10116
Image: Construction of the creation of new standards and CUs. Conductors Supported by Construction Standards Conductors Supported by Construction Standards Conductors In Deaders of the creation of new standards and CUs. Conductors Supported by Construction Standards Conductors Supported by Construction Standards Constructions Constructions Supported by Constructions Constructions Supported by Standards and CUs. Deader Constructions Supported by Constructions This Is a Computer Generated Drawing - Do Not Revise Manually Contact System Engineering - Transmission Section for the creation of new standards and CUs. Drawing Scale: NA Construct Construction Standards Construct Construction Standards Construct Construction Standards Construct System Engineering - Transmission Section for the creation of new standards and CUs. Drawing Scale: NA Construct System Engineering - Transmission Section for the creation of new standards and CUs. Drawing Scale: NA Construct Cons Transmission Section for the creation	7/16" EH ST	EEL 0.435	0.673		-13-031-00-3	1030312113		-031-60-36	10303	12110
STOCKBRIDGE DAMPERS			D — BAC CTOR ON	K SPA		AHEAD SF	PAN —			
BACK SPAN AHEAD SPAN CONDUCTOR IN DEADEND CLAMP STOCKBRIDGE DAMPERS CU FUNCTION: TL69 FOR 35kV & 46kV, TG96 FOR 69kV THRU 344kV, T345 FOR 345kV FOR CORRECT CU: SUBSTITUTE 5 FOR NYSEG, 6 FOR CMP OR 9 FOR RG&E IN PLACE OF ASTERISK (C*_). NOTE A: NOT ALL SPANS WILL HAVE TWO DAMPERS IN EACH DIRECTION. PLEASE SEE SHEET TJ-08-003 FOR SECTION SPECIFIC DAMPER INSATLLATION INFORMATION. NOTE B: FOR CONDUCTORS SUPPORTED BY POST INSULATORS PLEASE REFERENCE THE SAME SPACING AS FOR CONDUCTORS SUPPORTED BY SUSPENSION INSULATORS. THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY Contact System Engineering - Transmission Section for the creation of new standards and CUs. TRANSMISSION CONSTRUCTION STANDARDS MANUAL Drawing Scale: N/A TRANSMISSION CONSTRUCTION STANDARDS MANUAL Date Ch:: Approved By: Date App;: Date App;: TM2 23 T.I=08-001 Sheep				STOC	KBRIDGE E	DAMPERS			C	
CONDUCTOR IN DEADEND CLAMP STOCKBRIDGE DAMPERS CU FUNCTION: TL69 FOR 35kV & 46kV, TG96 FOR 69kV THRU 344kV, T345 FOR 345kV FOR CORRECT CU: SUBSTITUTE 5 FOR NYSEG, 6 FOR CMP OR 9 FOR RG&E IN PLACE OF ASTERISK (C*_). NOTE A: NOT ALL SPANS WILL HAVE TWO DAMPERS IN EACH DIRECTION. PLEASE SEE SHEET TJ-08-003 FOR SECTION SPECIFIC DAMPER INSATLLATION INFORMATION. NOTE B: FOR CONDUCTORS SUPPORTED BY POST INSULATORS PLEASE REFERENCE THE SAME SPACING AS FOR CONDUCTORS SUPPORTED BY SUSPENSION INSULATORS. THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY Contact System Engineering - Transmission Section for the creation of new standards and CUs. TRANSMISSION TRANSMISSION TRANSMISSION TRANSMISSION TRANSMISSION TRANSMISSION STANDARDS MANUAL Drwn. By: Date Dr:: Checked By: Date CK:: Approved By: Date App:: TM2 23 T.I-08-001 Sheet		SPAN)~				5	AHEAD	SPAN	
CONDUCTOR IN DEADEND CLAMP STOCKBRIDGE DAMPERS CU FUNCTION: TL69 FOR 35kV & 46kV, TG96 FOR 69kV THRU 344kV, T345 FOR 345kV FOR CORRECT CU: SUBSTITUTE 5 FOR NYSEG, 6 FOR CMP OR 9 FOR RG&E IN PLACE OF ASTERISK (C*_). NOTE A: NOT ALL SPANS WILL HAVE TWO DAMPERS IN EACH DIRECTION. PLEASE SEE SHEET TJ-08-003 FOR SECTION SPECIFIC DAMPER INSATLLATION INFORMATION. NOTE B: FOR CONDUCTORS SUPPORTED BY POST INSULATORS PLEASE REFERENCE THE SAME SPACING AS FOR CONDUCTORS SUPPORTED BY SUSPENSION INSULATORS. THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY Contact System Engineering - Transmission Section for the creation of new standards and CUs. TRANSMISSION CONSTRUCTION STANDARDS MANUAL TRANSMISSION CONDUCTOR AND STATIC RELATED DETAILS OT MANUAL TRANSMISSION CONSTRUCTION STANDARDS MANUAL DETWINE DATE OF DATE: Date App:: TM2 23 T.I-08-001 Sheet								/	0170	•
CU FUNCTION: TL69 FOR 35kV & 46kV, TG96 FOR 69kV THRU 344kV, T345 FOR 345kV FOR CORRECT CU: SUBSTITUTE 5 FOR NYSEG, 6 FOR CMP OR 9 FOR RG&E IN PLACE OF ASTERISK (C*_). NOTE A: NOT ALL SPANS WILL HAVE TWO DAMPERS IN EACH DIRECTION. PLEASE SEE SHEET TJ-08-003 FOR SECTION SPECIFIC DAMPER INSATLLATION INFORMATION. NOTE B: FOR CONDUCTORS SUPPORTED BY POST INSULATORS PLEASE REFERENCE THE SAME SPACING AS FOR CONDUCTORS SUPPORTED BY SUSPENSION INSULATORS. THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY Contact System Engineering - Transmission Section for the creation of new standards and CUs. TRANSMISSION CONSTRUCTION STANDARDS MANUAL Drwn. By: Date Dr:: Checked By: Date Ck:: Approved By: Date Ck:: Approved By: Date App:: TM2 23 T. L-08-001 Sheep		CONDUC	TOR IN I	DEADE	END CLAMF	STOCKBRI	DGE DA	MPERS		
Contact System Engineering - Transmission Section for the creation of new standards and CUs. Drawing Scale: N/A Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Drawing Scale: N/A Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Drawing Scale: N/A Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Drawing Scale: N/A Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Transmission Section for the creation of new standards and CUs. Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Transmission Section for the creation of new standards and CUs. Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Transmission Section for the creation of new standards and CUs. Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Transmission Section for the creation of new standards and CUs. Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Transmission Section for the creation of new standards and CUs. Image: Contact System Engineering - Transmission Section for the creation of new standards and CUs. Transmission Section for the creation of new standards and CUs. Image: Contact System Enginering - Transmission Section for the creation	CU FUNCTION: FOR CORRECT OF ASTERISK (C NOTE A: NOT AL SHEET TJ-08-00 NOTE B: FOR C THE SAME SPAC THIS IS A C	TL69 FOR 35kV CU: SUBSTITU C*_). LI SPANS WILL 3 FOR SECTION ONDUCTORS S CING AS FOR C	& 46kV, TG TE 5 FOR N HAVE TWO N SPECIFIC SUPPORTE CONDUCTO NERATED	996 FOR YSEG, 6 D DAMPE D DAMPE D BY PO RS SUP DRAWIN	69kV THRU 344 FOR CMP OR ERS IN EACH D R INSATLLATION PORTED BY SU	KV, T345 FOR 3 FOR RG&E IN RECTION. PLE ON INFORMATIC SPLEASE REFI SPENSION INSU	45kV PLACE ASE SEE N. ERENCE JLATORS.			
TRANSMISSION TRANSMISSION CONDUCTOR AND STATIC RELATED DETAILS REVIS IBERDROLA CONSTRUCTION VIBRATION DAMPERS 00 IBERDROLA STANDARDS STOCKBRIDGE DAMPERS 00 IDITION BY: Date Dr.: Checked By: Date Ck.: Approved By: Date App.: TM2 23 T. I-08-001 Sheet	Contact System Er	ngineering - Trai	nsmission S	ection fo	r the creation of	new standards ar	nd CUs.	Drawing	Scale: N	N/A
Image: Standard Standards and Standards a		TRANSMIS	SION	TRANS			STATIC R		AILS	REVISION
IBERDROLA USA STANDARDS MANUAL STOCKBRIDGE DAMPERS DAT Drwn. By: Date Dr.: Checked By: Date Ck.: Approved By: Date App.: TM2 23 T.I-08-001 Sheet		CONSTRU	CTION				MPERS			00
USA MANUAL Drwn. By: Date Dr.: Checked By: Date Ck.: Approved By: Date App.: TM2 23 T.I-08-001 Shee	IBERDROLA	STANDA	RDS		ר ې					
Drwn. By: Date Dr.: Checked By: Date Ck.: Approved By: Date App.: TM2 23 T.I-08-001 Shee					51					5/21/2015
TM2 23 T I-08-001 Shee	Drwn By: Date Dr	Checked	n∟ Bv: Г	Date Ck ·	Approved By:	Date Ann · I				0/21/2010
B. Franklin (7/10/2014 Snepard/Becken/Hart 12/24/2014 Barry R. Hart 12/24/2014 IVIC. 2011 OO OO I	B. Franklin 7/10/2014	Shepard/Beck	en/Hart 12	2/24/2014	Barry R. Hart	12/24/2014	TM2.2	3.TJ-08-0)01	Sheet 1

		VIB	RATION	I DAMF	PER INS	TALLA	TION R	EQUIR		S
LINE	SECTION NAME:					VOL	TAGE:			
CONE	OUCTOR/STATIC V	VIRE:								
				DAN	MPER SP	PACING	(IN.)			
STR. NO.	DAMPER TYPE	DIM. "A"	OVER RODS?	DIM. "B"	OVER RODS?	DIM. "C"	OVER RODS?	DIM. "D"	OVER RODS?	COMMENTS

NOTE B: REFE	R TO TJ-08-001 AND TJ-	08-002 FOF	R DAMPER SPA	CING ILLUS	STRATIONS.						
THIS IS A C	OMPUTER GENERATED	DRAWIN	G - DO NOT F	REVISE MA	NUALLY						
Contact Engineerin	ng Standards - Transmissi	on Section	for the creation c	of new stand	lards and CUs.	Drawing Scale: N	N/A				
	TRANSMISSION	TRANS	MISSION CON	DUCTOR A	AND STATIC F	RELATED DETAILS	REVISION				
CONSTRUCTION VIBRATION DAMPERS											
IBERDROLA	STANDARDS		PLAC	EMENT SF	PACING CHAF	RT	DATE				
USA MANUAL 5/21/2											
Drwn. By: Date Dr.: Checked By: Date Ck.: Approved By: Date App.: TM2 23 TLOS 003 Sheet 1											
B. Franklin 7/18/2014	B. Franklin 7/18/2014 Becken/Hart 12/24/2014 Barry R. Hart 5/20/2015 TVIZ.Z.S. I.S-00-005										

NOTE A: REFER TO TJ-08-001 AND TJ-08-002 FOR DAMPER CU AND MID INFORMATION.

	<u> </u>	-																~		
	CU Ty	/pe: C	CNE	DO (a	II mac	ros)							<u></u>			Cl	Js limit	ed to ?	17 cha	racters
								<u>TJ-0</u>	8 .	- Star	nda	ard	CUI	Forma	at					
	1st	2nd		3rd	4th	5th	6th	7ti	۱	8th	9t	h	10th	11th	12th	13th	14th	15th	16th	17th
	С	X1		С	Т	-	Т	J		-	D)	Х	(3	-	X4	X5	-	X6	X7
L			_			·		<u> </u>												
		1	Op(20		X2	Volta	age			┝	<u>X7</u>		(tor (If X	6=C)		_	
			CM			5 4	30K 46k	V V			ŀ	A B			4/0 / 477 A	AAAC 1	<u>9</u> R/1		_	
				kE		6	69k	XV			F	C			477	AAC 1	9		_	
						1	115	kV				D			477 A	CSR 3)/7			
						2	230	kV				<u> </u>			1033	3 AAC 3	7		_	
						3	<u>345</u> Multi-	KV Llsa			⊦	 		6	<u>1033</u> Α 12 5 Δ(SR/TW	<u>5/7</u> 1 20/7		_	
							man	030			ŀ	H		0	336.4	ACSR 3	80/7		_	
	X	3			Dan	nper Ty	ре				Ē				795 A	CSR 4	5/7			
	S	<u>T</u>			Sto		je			_		J			1033 /	ACSR 5	4/7		_	
	5					Spiral				_	⊦	<u> </u>			<u>1192</u> 1500 Δ	ACSR 4	<u>5/7</u> 1/10		_	
										-	ŀ	M			1280 A	CAR 42	2/19		_	
											Ĺ	Ν			2156 A	CSR 84	4/19			
		4								-	╞	<u>0</u>			4/0 /	ACSR 6	/1		_	
	⊢ F	4		U	onauci Ba	or Con	nectio 1	n		_	ŀ	<u>P</u>			<u>330.4</u> 2/		18/1		_	
	F	-			F	ired On					ŀ	R			2A CW	LD/CU	1/2			
					(Grip On						S			1/0 A	ACSR 6	/1			
										_	⊦				<u>3/0 A</u>	$\frac{1}{1}$	/1		_	
											ŀ	<u>v</u>	+		4/0 EK	CWLD	/CU		-	
	X	5		С	onduct	or Atta	chmer	nt			Ē	Ŵ			795 A	CSR 3	6/1			
		3		Att	ach to	Bare Co	onduc	tor				X			795 A	CSR 20	6/7		_	
			ttac	hed to	o Cond	uctor C	over A	rmor F	od	s	╞	<u>Y</u> 7			<u>1113 /</u> /77 4	ACSR 4	<u>5/1</u> 3/7		_	
										-	ŀ	1			900 A	CSR 4	5/7		_	
												2			1272	2 AAC 6	51			
		6			Type	of Cond	uctor			-		3			4/0	AAAC	7			
					туре с	ADSS	uciói			-	Г	X7	1	S	static W	/ire (If X	6=S)			
	Ć				Сс	onducto	r				Ē	L	7#8	6 (3/8") /	Alumov	veld or 3	3#6 Alu	moweld	1	
		3			St	atic Wir	е				ļ	Η		7‡	¥7 (7/16	6) Alum	oweld			
					(JPGW				_	╞	<u>X</u> V		3/8	EHS	7 Stran	d Steel	1	_	
	L										┢	Z	+	4/0 A/) or 4/0	ACSR 6	6/1	-	
	X	7			OPG	N (If X6	6=O)				L	_								
			St	anda	rd 36 F	iber OF	PGW	754278	}	_										
			.91 47	13" 36 72" 26	Fiber		6000	20546 20546	<u>ว</u> ว											
	R	$\overline{\mathbf{x}}$.60	2 00	5 Fiber	OPGW	6000	20546	<u>5</u> 1											
										_										
	CU FL	INCTI	ON:	TL69	FOR 3	5KV & 4	46KV,	TG69 I	-OF	R 69kV	THR	RU 34	44KV, ⁻	T345 F0	DR					
	345KV	/ & GF	EA	TER.																
	THIS	IS A	со	MPU	TER G	ENERA	TED	DRAW	NG	3 - DO	NO	DT R	EVISE	MANU	ALLY					
Co	ntact E	ngine	ering	g Stan	dards -	Transm	nission	Sectio	n fo	or the c	reati	on o	f new s	standarc	ls and C	CUs.	Dra	awing Sc	ale: N/A	\
	1		Т	TR	ANSM	ISSIO	N			COND	UC	TOR	AND	STATIC	RELA	TED DI	ETAILS		F	EVISION
				CO	NSTR	JCTIO	N					СС	NDUC		AMPE	RS				00
' IE	BERD	ROL	Α	S	TAND	ARDS						ST	ANDA	RD CU	FORM	IAT				DATE
U	SA				MAN	JAL					/	AND	NAMI	ING CC	NVEN	TION			5	/21/2015
Drwr	n. By: C	Date Di			Checke	d By:		Date Ck	: [Approv	vedÆ	By:	Date A	App.:	TM	223	T.I-0	8-CI	jΤ	Sheet 1
о. нf	an Kiin 0	123/20	14		Decken	n⊐an	12	<u>~</u> /24/20	4	Dairy	к. Па	มเ	12/24/2	2014					- 1	

-S 2 2 1 2 2 10 2

SEE ST

NOTE: HOLE DIAMETER = 15/16"

FOR GUYING REFER TO "TR" SECTION OF TRANSMISSION MANUAL.

NOTE: LARGER OR SMALLER BOLTS MAY BE REQUIRED DEPENDING ON THE ACTUAL DIAMETER OF THE POLE USED. SUBSTITUTE MATERIAL ID (MID) ON THE WORK ORDER COMPONENTS PAGE FOR THE LENGTH NEEDED IF DIFFERENT THAN THE GENERIC LENGTH SHOWN IN THE BILL OF MATERIALS. CONTACT ELECTRIC SYSTEM ENGINEERING - TRANSMISSION SECTION FOR ASSISTANCE.

S	-SC	-SG	-DS	-DC	-DG	BII	L OF MA	TERI	AL	CL	J TYPE: POLE	
			QTY.	QTY.	QTY.	ИОМ	NYSEG MID	C	MP /ID	CU: C*F	PT-TJ-09-001-(m	nark)
	2	2	2	2	2	EA 1	000910800	60002	273690	NUT LCK MF SC	2 7/8 BOLT GALV	,
	2	2	2	2	2	EA 1	000911900	60002	273770	NUT SQ 7/8 BO		
		2	1		2		000943700	6000	272350	NOT MACH C	U X 3/8 THK 15/16 H (V SOHD SONT 7/9 V	ALV
	1		1	1			035475014	60002	272360	BOLT MACH GA	LV SQHD SQNT 7/8 X	(16)
	1	2		1	2	<u>EA</u> 1	035475018	60002	272370	BOLT MACH GA	ALV SQHD SQNT 7/8 X	(18
	2	2	2	2	2	EA 1	036200007	60002	251031	CLMP GRND W	IRE U-CLIP 15/16 H	
	2	1		2	1			60002	274040		<u> EYE - 15/16 H</u> EYE - (2) 15/16 H	
	2	2	2	2	2			60002	274612	WSHR HELICAL	_ 7/8	
OP WI RL	WHEN BOLT HEN US ICTUR	N USEI TO BE SED A E STA		HE STA TED 9" CONDI D FOR		DCATIO 1 TOP O R LOCA ISION	ON: OF POLE. ATION: TO TOP BO	OLT.	EVISE M	IANUALLY	CU Function: TL69 for 35kV & 46 TG69 for 69kV - 34 T345 for 345kV & g For correct CU: substitute 5 for NYS 6 for CMP or 9 for F in place of asterisk	kV, 4kV, reater SEG, RG&E (C*_).
		nt Englis					ing - DU N				Drawing Scalar 1 1"	2" = 1' 0"
		u Engine T							v standar			
			TRA	NSMISSI	ON	IRANS				AND STATIC I	RELATED DETAILS	
1			CON	STRUCT	ION		GU				AILS	
	SERDI	KOLA	ST/	ANDARD	s			ON	WOOD	STRUCTURE		
L		ato Dr.	MANU	AL TM2.	23.00	Data Clr	• <u>Approve</u>	Dv.	Data Ann	•1		12/13/2012
L.A.	Best 6/	ate Dr 14/2011	Bartczak	Becken/S	Shepard	11/3/201	1 Barry R. I	Hart	12/13/201	<u>-</u> TJ-	-09-001	Sheet 1

CU TYPE: F	POLE	BILL O	F MATERIAL				
NOR -L	S UOM MID	CL	J: C*PT-TJ-()9-002-X			
1 2 2	EA 1000910800	NUT LCK MF SQ 7	7/8 BOLT GALV				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EA 1035475016	BOLT SQ HEAD 7	8 X 16 W/ SQ NU	T (NOTE A)			
4 2 2	EA 6000274612	WASHER HELICA	L (7/8")				
5 2	EA 6000274040	PLT POLE EYE 15	/16 H				
	1 EA 6000274505	YOKE AL TRIANG	LE 40K				
8 2 2	2 EA 1039220531	SHCKL ANCH 7/8	BNK 1-1/4 OPNG				
9 1 1	EA 1036200007	CLMP GRD WIRE	U-CLIP 15/16" H				
					8 7 9 2 4		1-6"
	TJ-09-002-R			<u>TJ-09</u>	-002-L		
FOR L	DE ON KOUND WOO	DPULE	FOR U	SE ON LAMI	NATED WOO	JU POLI	=
CU FUNCTION: TI	_69 FOR 35KV & 46KV, TG69 F	OR 69KV THRU 344 K∖	, T345 FOR 345KV &	GREATER			
FOR CORRECT CU (C*_)	J: SUBSTITUTE 5 FOR NYSEC	G, 6 FOR CMP OR 9 FO	R RG&E, IN PLACE O	F ASTERISK			
NOTE A: LARGER THE POLE USED. THE LENGTH NEE CONTACT SYSTE	OR SMALLER BOLTS MAY BE SUBSTITUTE MATERIAL ID (N DED IF DIFFERENT THAN THI M ENGINEERING-TRANSMISS	E REQUIRED DEPENDI MD) ON THE WORK OF E GENERIC LENGTH S ION SECTION IF YOU N	NG ON THE ACTUAL IDER COMPONENTS HOWN IN THE BILL O IEED ASSISTANCE.	DIAMETER OF PAGE FOR F MATERIALS.			
NOTE B: TJ-09-002 NOT REQUIRE AD	2-S IS FOR USE ON STEEL ST DITIONAL POLE EYE PLATES	RUCTURES AND ALL C OR DEADEND TEES.	THER STRUCTURES	THAT DO			
THIS IS A C	OMPUTER GENERATED	DRAWING - DO	NOT REVISE MA	NUALLY			
Contact Engineerin	ng Standards - Transmissio	on Section for the cre	ation of new stand	ards and CUs.	Drawing	Scale: 1" =	: 15"
	TRANSMISSION	CONDU	ICTOR AND STA	TIC RELATED	DETAILS		REVISION
	CONSTRUCTION		SPECIAL AER)	ļ	00
IBERDROLA			WITHOUT	GUYING		ļ	DATE
Drwn, Bv: Date Dr	Checked By:	Date Ck.: Approve	d By: Date App				5/21/2015
B. Franklin 4/15/2013	Becken/Hart	12/24/2014 Barry R	Hart 12/24/2014	I M2.23	3.IJ-09-(JU2	Sheet 1

CU TYPE:	POLE		BILL OF I	MATERIAL				
ITEM QTY. QTY. NORG -LG	UOM IUSA MID		CU: C*	PT-TJ-09-0	02-X			
1 2 4	EA 1000910800 NU	T LCK MF	SQ 7/8 BOL	T GALV				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	EA 6000273770 NU	T SQ 7/8 B	OLT GALV					
4 2 4	EA 6000274612 WA	SHER HEI	LICAL (7/8")					
5 2	EA 1000946500 WA	SHER 4" S	Q. FLAT (7/	(8")				
$\begin{array}{c c} 6 & 2 \\ \hline 7 & 3 \end{array}$	EA 6000274044 DO	AD FND T	<u>POLEEYE</u> =F 60K	15/16 H				
8 1 1	EA 6000274071 YO	KE AL TRI	ANGLE 40K					
9 2 2	EA 1039220531 SH		7/8 BNK 1-	1/4 OPNG				
	EA 1030200007 [CE			15/10 1				
) 1'-6" 1'-6"					1 -6"
	<u>TJ-09-002-RG</u>				<u>TJ-09-</u>	002-LG		
FOR L	JSE ON ROUND WOO	D POLE		FOR US	E ON LAMII	NATED W	OOD POL	E
CU FUNCTION: T	L69 FOR 35KV & 46KV, TG69 I	FOR 69KV TH	IRU 344 KV, T	345 FOR 345KV & G	GREATER			
FOR CORRECT C (C*_)	J: SUBSTITUTE 5 FOR NYSE	G, 6 FOR CN	P OR 9 FOR R	G&E, IN PLACE OF	ASTERISK			
NOTE A: LARGER THE POLE USED. THE LENGTH NEE CONTACT SYSTE	OR SMALLER BOLTS MAY B SUBSTITUTE MATERIAL ID (DED IF DIFFERENT THAN TH M ENGINEERING-TRANSMISS	E REQUIREE MID) ON THE IE GENERIC SION SECTIC	DEPENDING WORK ORDE LENGTH SHO N IF YOU NEE	ON THE ACTUAL E R COMPONENTS F WN IN THE BILL OF D ASSISTANCE.	DIAMETER OF PAGE FOR MATERIALS.			
NOTE B: REFER	TO SECTIONS TH AND TR FO VIRE USE INSULATED GUY A	R GUYING AI SSEMBILES.	ND ANCHORIN	IG INFORMATION.	WHEN			
THIS IS A C	OMPUTER GENERATED	DRAWIN	G - DO NC	T REVISE MAN	NUALLY			
Contact Engineeri	ng Standards - Transmissi	on Section	for the creati	on of new standa	ards and CUs.	Drawi	ng Scale: 1" :	= 15"
	TRANSMISSION		CONDUC			DETAILS	_	REVISION
IREPOROLA			:			J		
USA	MANUARDO			with G				5/21/2015
Drwn. By: Date Dr.:	Checked By:	Date Ck.:	Approved E	By: Date App.:				Sheet 2
B Franklin 4/15/2013	Becken/Hart	12/24/2014	Barry R H	ort 12/24/2014		5. I J-US	ラーレリノ	

CU TYPE:		BILL	OF MA				
MARK QTY. UON		CU: C	*PT-TJ	-9SS-C2-0	(MARK)		
I 1 EA	6000221550 SPCR	BNDL COND RIG	ID 18SPC	1.108			
B 1 EA	6000221540 SPCR	BNDL COND RIG	ID 18SPC	0.792-0.831			
F 1 EA	6000221550 SPCR	BNDL COND RIG	ID 18SPC	; 1.212			
K 1 EA	6000221570 SPCR	BNDL COND RIG	ID 18SPC	1.302			
	0000221565 SPCR	BINDL COND RIG	10 103PC	1.545			
				SPAN LE	NGTH "L"		
		SPA	CING	SPACING	SPACIN	G SPACING	
		INTE	RVAL	INTERVAL	INTERVA	AL INTERVAL	
		L/(N	l+1) ► -	L/(N+1)	L/(N+1)) L/(N+1)	
			_				
	=						
0	ι φ						
Ŭ							
	l .l						
l	-J						
				N=NO. OF	SPACERS	5	
			A 1/1/ TO 45				
CUFUNCTION: T	L69 FOR 35KV & 46KV, 1G6	59 FOR 69KV THRU 34	4 KV, 1345	FUR 345KV & GF			
FOR CORRECT C (C*_)	U: SUBSTITUTE 5 FOR NY	SEG, 6 FOR CMP OR 9	FOR RG&	E, IN PLACE OF A	ASTERISK		
NOTE A: SPACER HOT-STICK.	S ARE EQUIPPED WITH S	NAP-OFF BOLTS ENA	BLING INST	ALLATION WITH	A		
NOTE B: SPACER	S HAVE CUSHION GRIPS	N THE CONDUCTOR	ATTACHME	NT AREA.			
NOTE C: SPACEF SPAN. THE INTEF	RS SHALL BE INSTALLED A RVAL BETWEEN SPACERS	T EVEN INTERVALS A SHALL NOT EXCEED	LONG EAC 250 FEET.	H BUNDLED COM	NDUCTOR		
SPAN LENGTH	I PER PHASE						
<u><</u> 750' <1000'	2 3						
_ <1250' <1500'	4 5						
NOTE D: SPACE	S SHALL BE INSTALLED A	T THE SAME POINT IN	N THE SPAN	N ON EACH PHAS	SE.		
NOTE E: SPACER	S SHALL BE INSTALLED V	/ITHIN 72 HOURS OF		UCTORS BEING (CLIPPED IN.		
NOTE F: THE CO AND SPACER INS INSPECTION AND INSTALLATION OF	NDUCTORS SHALL BE UNI TALLATION. IF CONDUCT ANY DAMAGE SHALL BE F SPACERS.	DER CONSTANT SUR OR CONTACT OCCUR REPAIRED OR CONDL	/EILLANCE S THE CON ICTOR REP	BETWEEN CLIPP NDUCTOR SHALL PLACED PRIOR T	PING IN . BE O		
THIS IS A C	OMPUTER GENERAT	ED DRAWING - [DO NOT	REVISE MAN	UALLY		
Contact Engineeri	ng Standards - Transmi	ssion Section for the	e creation	of new standar	ds and CUs.	Drawing Scale: 1"	= 15"
	TRANSMISSION						REVISION
	CONSTRUCTION	CO	NDUCTO	R AND STATI	C RELATED	DETAILS	00
IBERDROLA			BUNDL	ED CONDUC	TOR SPACE	=RS	DATE 5/21/2015
Drwn. By: Date Dr.:	Checked By:	Date Ck.: App	oroved By:	Date App.:			Shoot 1
B. Franklin 9/11/2014	Becken/Hart	12/24/2014 Bar	rv R. Hart	12/24/2014		5. I J- I U-UU I	Sneet I

CU Ty	pe: CN	IDO (a	all macr	os)									C	Js limi	ted to 1	17 cha	racters
		,		,	-	T I_10_	1 - Sta	andar			rm	at	_				
1 ct	2nd	2rd	1th	5th	Gtk	1 J-1 U-			1 0th		нна њ	1. 1.2th	12th	1.4th	15th	16th	17th
	ZIIU	Siu	401	501	00 	· /ui	oui	901	1001			1201		1401			17.01
C	X1	C	ļ	-	I	J	-	X2)	X3		-	X4	X5	X6		
	X	1 0	рСо		X2	<u>v</u> Volta	ge		X6				Condu	ictor			
	5	N)	SEG		5	<u>35k</u>	V		A			4	<u>4/0 AA/</u>	<u>AC 19</u>			
	6				4	46K	V		В			4	$\frac{17}{477}$	<u>6R 18/1</u>			
	9	ĸ	Gae			115k	V V					47	477 ACS	R 30/7			
						230k	V		E			<u></u> 1	033 A/	AC 37			
					3	345k	V		F			10	33 ACS	SR 45/7	,		
					9	Multi-l	Jse		G			602.5	5 ACSF	R/TW 20)/7		
				0	. T	-			H			33	6.4 AC	<u>SR 30/7</u>	7		
	<u>X3</u>		Standa	Spacer	r i yp	e vr Spacer						<u></u>	<u>15 ACS</u>	R 45/7			
	SD SD		Conduc	tor Spa	acer-	Damper*			ĸ			11	92 ACS	SR 45/7	,		
			Conduc			Dampor			L			159	02 / (OC	R 54/1	9		
									М			128	BO ACA	R 42/1	9		
									Ν			215	56 ACS	R 84/1	9		
			<u></u>			ation			0			4	1/0 ACS	<u>SR 6/1</u>	4		
	Δ		Spa Holi		med	Wire						33	<u>6.4 AC</u>	<u>5R 18/</u> 117	I		
	B			Bolt	ted	VIIC			R			2A		/CU 1/2	2		
	C			Cushio	n Gri	р			S			1	/0 ACS	SR 6/1			
									Т			3	3/0 ACS	SR 6/1			
												1	1590 A	<u>AC 61</u>			
	V5		Num	bor of (Cond	uctore						4/0			J		
	$\frac{1}{2}$		2 Cor	ductor	s per	Phase			X			79	95 ACS	R 26/7			
	3		3 Cor	ductor	s per	Phase			Y			11	13 ACS	SR 45/7	,		
	4		4 Cor	ductor	s per	Phase			Ζ			47	77 ACS	R 26/7			
	6		6 Cor	ductor	s per	Phase			1			90	0 ACS	<u>R 45/7</u>			
									2			1	1272 A/	<u>AC 61</u>			
									3				4/0 AA				
CU FUI 345KV * FOR I	NCTION & GRE BUNDL	N: TL69 ATER. ES OF	FOR 3	5KV & 4 (3) SUI	I6KV, BCOI	, TG69 FC NDUCTO	OR 69k∨ RS OR №	THRU 3 IORE.	344KV,	T345	FOF	२					
THIS	IS A C	OMPU	ter gi	ENERA	TED	DRAWIN	G - DO	NOT I	REVISE	E MA	NUA	LLY					
Contact En	igineerii	ng Star	ndards -	Transm	nissio	n Section	for the c	reation of	of new	stand	ards	and C	CUs.	Dra	awing Sc	ale: N/A	
		TR	ANSM	SSION	١I		CONE	UCTOF	R AND	STA	TIC	RELA	TED D	ETAILS	;	R	EVISION
410		CO	NSTRL	JCTIO	N			С	ONDU	СТО	R SF	PACE	RS				00
BERD	ROLA	S	TANDA	ARDS				S	rand <i>a</i>	ARD (CU F	ORM	AT				DATE
USA			MANU	JAL				ANI	D NAM	IING (IVEN	ΓΙΟΝ			5/	21/2015
Drwn. By: D	ate Dr.:		Checked	d By:		Date Ck.:	Appro	ved By:	Date	App.:	т	M2	22 T	1_10	-1-0		Sheet 1
B. Franklin 6/	10/2014	I	Becken/	Hart	1	2/24/2014	Barry	K. Hart	12/24/	2014			<u>د</u> ں. ا				

ſ	AC	SR	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for	AC
	Wire Size	Stranding	Code Word	Diameter (inches)	Armor Rod	per Set	with Armor Rod (inches)	Suspension	Suspension	Wire S
	636.0	18/1	Kingbird	0.940			(477.
	636.0	24/7	Rook	0.977						568.4 T\
()	636.0	26/7	Grosbeak	0.990						602.5 T\
`	636.0	30/7	Scoter	1.019						636.0 T\
	636.0	30/19	Egret	1.019						795.0 T\
	715.5	30/19	Redwing	1.081						1272.0 1
	795.0	24/7	Cuckoo	1.092						
	795.0	26/7	Drake	1.107	1007237068	12	1.728	1036090204	1036090136	
	795.0	36/1	Coot	1.040	1007237065	12	1.660	1036090204	1036090118	
	795.0	45/7	Tern	1.063	1007237065	12	1.684	1036090204	1036090118	
	795.0	54/7	Condor	1.092						
	795.0	30/19	Mallard	1.140						
	850.8	45/7	Heron	1.100		12	1.720	6000111480	11-1488	Wire S
	900.0	54/7	Canary	1.162		13	1.782	6000111480	11-1506	795.
	954.0	45/7	Rail	1.165						
	954.0	54/7	Cardinal	1.196		13	1.816	6000111480	11-1464	
	1033.5	36/1	Tanager	1.186	1007237070	13	1.806	1036090204	1036090136	
	1033.5	45/7	Ortolan	1.212	1007237075	12	1.943	1036090204	1036090136	
	1033.5	54/7	Curlew	1.245	1007237075	12	1.976	1036090218	1036090136	
	1113.0	45/7	Bluejay	1.258						
	1192.5	45/7	Bunting	1.302	1007237077	12	2.032	1036090218	1036090136	Wire S
	1192.5	54/19	Grackle	1.337	072-370-79	13	2.068	1036090218	1036090149	3#6
	1272.0	54/19	Pheasant	1.381	072-370-79	13	2.112	360-902-40	1036090149	7#1
	1431.0	45/7	Bobolink	1.427			2.229	360-902-40	1036090149	7#8 (3
$\langle - \rangle$	1431.0	54/19	Plover	1.465						7#7 (7/
	1590.0	45/7	Lapwing	1.502	072-370-80	12	2.374	1036090252	1036090070	7#6 (1/
	1590.0	54/19	Falcon	1.544						19#1
	2156.0	84/19	Bluebird	1.762	1007237086	14	2.634	1036090204	1036090070	19#9
≻∣										19#8
										19#5
ΞSI										6M
ĂŽ										8M
ΞΣ										12.5
Щ Ш										20N
2 X	ACS	SR **	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for	
<u> 변</u> 전		Stranding	Code	Diameter	Armor Rod	per	with Armor Rod	Suspension	Suspension	
	vvire Size	Suanding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR	
žΣ	101.8	12/7	Petrel	0.461					1036090060	
0	134.6	12/7	Leghorn	0.530					1	

ACSR/	ΤW	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
Wire Size	Stranding	Word	(inches)	Armor Rod MID	per Set	(inches)	Clamp over PAR	Clamp w/o PAR
477.0	22/7	X/TW	0.808					
568.4 TW-23	22/7	X/TW	0.883					
602.5 TW-16	20/7	Hen/TW	0.883	1007237026	12	1.383	1036090149	1036090095
636.0 TW-16	20/7	Grosbeak/TW	0.906					
795.0 TW-16	22/7	Drake/TW	1.011					
1272.0 TW-7	33/7	Bittern/TW	1.215	1007237075	12	1.945	1036090204	1036090136

ACS	S	Wire	Conductor Diameter	Preformed	Rods	Overall Diameter	MID for	MID for
Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR
795.0	26/7	Drake/ACSS	1.107					

AWLD		Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for	
Wire Size	Stranding	Word	(inches)	Armor Rod MID	per Set	(inches)	Clamp over PAR	Clamp w/o PAR	
3#6			0.349					11-1376, -1408	
7#10			0.306						
7#8 (3/8")			0.385			0.613		1036098046	
7#7 (7/16")			0.433			0.648			
7#6 (1/2")			0.486			0.689		11-1408	
19#10			0.509					11-1408	
19#9			0.572						
19#8			0.642						
19#5			0.910						
6M			0.242						
8M			0.272						
12.5M			0.343						
20M			0.444						

THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY 190.8 211.3

12/7 Dorking 0.631 1036090075 1036090075 12/7 1007236610 1036090118 Cochin 0.663 13 1.028

CLAMPS WITH SO APPLICATIONS AN WIRE APPLICATIO SYSTEM ENGINEE	CKET FITTINGS ARE U ID CLAMPS WITHOUT NS. FOR OTHER APPI RING - TRANSMISSIOI	ISED FOR SOCKET F LICATIONS N SECTIO	PHASE CONDUCTOR FITTINGS FOR STATIC S, CONTACT ELECTRI N.	с		
Contact Enginee	ering Standards - Transm	nission for t	the creation of new stand	lards and CUs.	Drawing Scale:	N/A
IBERDROLA USA	IBERDROLA USA TRANSMISSION CONSTRUCTION STANDARDS MANUAL	TRANS	SMISSION CONDUCTO SUSPENS	DR AND STATIC SION CLAMPS	RELATED INFO	Revision 00 Date / /2014
Drwn. By: Date Dr.: L.A. Best 10/10/2012	Checked By: Shepard/Becken/Hart	Date Ck.: / /2014	Approved By: Date Ap Barry R. Hart / /201	^p 4 TM2.2	3.TJ-01-001	Sheet 2

** These are high mechanical strength wires.

 \bigcirc

ANSI B 11" X 17"

C	U	Wire Code	Conductor Diameter	Preformed Armor Rod	Rods per	Overall Diameter with Armor Rod	MID for Suspension	MID for Suspension	CWL	D/CU	Wire Code	Conductor Diameter	Preformed Armor Rod	Rods per	Overall Diameter with Armor Rod	MID for Suspension	MID for Suspensio
Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o F
#6 MHD	Solid		0.162						1/0f	1/6		0.388					
#4 MHD	Solid		0.204					11-1376	2/0f	1/6		0.436					11-1392
#3 MHD	Solid		0.229					11-1376	2a	1/2		0.366					
#2 MHD	Solid		0.258					11-1376	2f	1/6		0.308					
#1 MHD	Solid		0.289					11-1376	4/0e	7/12		0.613					
#2	Solid		0.2576						4/0ek	4/15		0.571					10360970
1/0	Solid		0.3249						4a	1/2		0.290					
2/0	Solid		0.3648						7a	1/2		0.223					
4/0	Solid		0.460						7d	2/1		0.246					
#3	0/1		0.2294														
#4	0/3		0.254							(=		<u> </u>		I			
#2	0/3		0.320						STEEL	. (EHS)	Wire	Conductor	Preformed	Rods	Overall Diameter	MID for	MID for
#1	0/3		0.360					11-1376	Wire Size	Stranding	Word	(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o F
									1/4	3		0.2586			(/		
#4 HD	0/7		0.232						5/16 **	3		0.312					
#3	0/7		0.260						5/16 **	7		0.312					103609804
#2 HD	0/7		0.292						3/8	7		0.360	1007243005	12	0.560	1036098070	103609804
#1 HD	0/7		0.328						7/16	7		0.435	1007243013	12	0.675	1036098083	103609804
1/0	0/7		0.368					11-1376	1/2	7		0.495	1007243015	12	0.767	360-980-82	10360980
2/0 HD	0/7		0.414	1007237505	10	0.700	360-970-82	1036097046	9/16	7		0.564	072-430-20	12			10360980
3/0 HD	0/7		0.464						9/16	19		0.565					10360980
4/0 HD	0/7		0.522					11-1392									
	0/10		0.529					1026007060									
4/0 HD	0/19		0.526					1036097060									
350.0	0/19		0.679					1030037070	** 5/16" IS (OBSOLETE -	USE 3/8" EH	S/SIRSIL	•				
550.0	0/13		0.073														
			Conductor	Preformed	Rods	Overall Diameter	MID for	MID for									
01		TYPE	Diameter	Armor Rod	per	with Armor Rod	Suspension	Suspension									
Wire Size	Stranding		(inches)	MID	Set	(inches)	Clamp over PAR	Clamp w/o PAR									
#2	Solid	40% HS	0.2576														
3#8	3	30% EHS	0.277					11-1376								[
3#7	3	30% EHS	0.311					1036098046									
0#1		30% EHS	0.349														
3#6	3	1			1												
3#6 7#10	3 7	40% HS	0.306														
3#6 7#10 7#9	3 7 7 7	40% HS 40% HS	0.306 0.343														
3#6 7#10 7#9 7#8	3 7 7 7 7	40% HS 40% HS 40% HS	0.306 0.343 0.385					1036098046									
3#6 7#10 7#9 7#8 7#7	3 7 7 7 7 7	40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433					1036098046									
3#6 7#10 7#9 7#8 7#7 19#5	3 7 7 7 7 19	40% HS 40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910					1036098046 360-980-99	CLAMPS	WITH SOCKE	T FITTINGS	S ARE USED) FOR PHASE (JCTOR		
3#6 7#10 7#9 7#8 7#7 19#5 6M	3 7 7 7 7 19 7	40% HS 40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237					1036098046 360-980-99		WITH SOCKE		S ARE USED) FOR PHASE (KET FITTINGS				
3#6 7#10 7#9 7#8 7#7 19#5 6M 8M	3 7 7 7 7 19 7 7 7	40% HS 40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237 0.276					1036098046 360-980-99	CLAMPS V APPLICAT WIRE APP	WITH SOCKE FIONS AND C PLICATIONS.	ET FITTINGS CLAMPS WIT FOR OTHE	S ARE USED THOUT SOC ER APPLICA) FOR PHASE (CKET FITTINGS TIONS, CONTA	CONDI FOR S ACT EL	JCTOR STATIC LECTRIC		
3#6 7#10 7#9 7#8 7#7 19#5 6M 8M 12.5M	3 7 7 7 7 19 7 7 7 7	40% HS 40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345					1036098046 360-980-99	CLAMPS V APPLICAT WIRE APP SYSTEM I	WITH SOCKE FIONS AND C PLICATIONS. ENGINEERIN	ET FITTINGS CLAMPS WIT FOR OTHE IG - TRANSI	S ARE USEE THOUT SOC ER APPLICA MISSION SE) FOR PHASE (KET FITTINGS TIONS, CONTA ECTION.	CONDI FOR S ACT EL	JCTOR STATIC LECTRIC		
3#6 7#10 7#9 7#8 7#7 19#5 6M 8M 12.5M	3 7 7 7 19 7 7 7 7	40% HS 40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345					1036098046 360-980-99	CLAMPS A APPLICAT WIRE APP SYSTEM I Conta	WITH SOCKE FIONS AND C PLICATIONS. ENGINEERIN	T FITTINGS CLAMPS WI FOR OTHE IG - TRANSI	S ARE USED THOUT SOC ER APPLICA MISSION SE - Transmissio	D FOR PHASE (CKET FITTINGS) TIONS, CONTA CTION.	CONDI FOR ACT EL	JCTOR STATIC LECTRIC	CUs. Dra	awing Scale:
3#6 7#10 7#9 7#8 7#7 19#5 6M 8M 12.5M	3 7 7 7 19 7 7 7 7	40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345					1036098046 360-980-99	CLAMPS V APPLICAT WIRE APP SYSTEM I Conta	WITH SOCKE FIONS AND C PLICATIONS. ENGINEERIN ct Engineering	ET FITTINGS CLAMPS WIT FOR OTHE IG - TRANSI G Standards - BERDROLA	S ARE USEE THOUT SOC ER APPLICA MISSION SE Transmissio	D FOR PHASE C CKET FITTINGS TIONS, CONTA ECTION. On for the creation TRANSMISSION	CONDI FOR ACT EL	JCTOR STATIC LECTRIC	CUs. Dra STATIC RELATI	awing Scale: ED INFO
3#6 7#10 7#9 7#8 7#7 19#5 6M 8M 12.5M	3 7 7 7 19 7 7 7 7	40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345					1036098046 360-980-99	CLAMPS A APPLICAT WIRE APF SYSTEM F Conta	WITH SOCKE FIONS AND C PLICATIONS. ENGINEERIN ct Engineering	T FITTINGS LAMPS WI FOR OTHE IG - TRANSI Standards BERDROLA TRANSMISS CONSTRUCT	S ARE USED THOUT SOC ER APPLICA MISSION SE Transmissio USA T ION	D FOR PHASE C CKET FITTINGS TIONS, CONTA ECTION. On for the creation TRANSMISSION	CONDI FOR ACT EL	JCTOR STATIC LECTRIC ew standards and IDUCTOR AND S JSPENSION CLA	CUs. Dra STATIC RELATI	awing Scale: ED INFO
3#6 7#10 7#9 7#8 7#7 19#5 6M 8M 12.5M	3 7 7 7 19 7 7 7	40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345					1036098046 360-980-99	CLAMPS A APPLICAT WIRE APP SYSTEM I Contac	WITH SOCKE FIONS AND C PLICATIONS. ENGINEERIN ct Engineering	T FITTINGS LAMPS WI FOR OTHE IG - TRANSI Standards - BERDROLA TRANSMISS CONSTRUCT STANDARI	S ARE USEE THOUT SOC ER APPLICA MISSION SE - Transmissio USA TON TION DS	D FOR PHASE (CKET FITTINGS) TIONS, CONTA CTION. On for the creation RANSMISSION	CONDI FOR ACT EL on of ne I CON SL	JCTOR STATIC LECTRIC ew standards and IDUCTOR AND JSPENSION CLA	CUS. Dra STATIC RELATI	awing Scale: ED INFO
3#6 7#10 7#9 7#8 7#7 19#5 6M 8M 12.5M	3 7 7 7 19 7 7 7 7	40% HS 40% HS 40% HS 40% HS	0.306 0.343 0.385 0.433 0.910 0.237 0.276 0.345					1036098046 360-980-99	CLAMPS V APPLICAT WIRE APP SYSTEM I Conta	WITH SOCKE FIONS AND C PLICATIONS. ENGINEERIN Ct Engineering	ET FITTINGS CLAMPS WI FOR OTHE IG - TRANSI G Standards BERDROLA TRANSMISS CONSTRUCT STANDARI MANUAL	S ARE USEE THOUT SOC ER APPLICA MISSION SE Transmissio USA ION TION DS	D FOR PHASE C CKET FITTINGS TIONS, CONTA CTION. On for the creation RANSMISSION	CONDI FOR ACT EL In of ne I CON SL	JCTOR STATIC LECTRIC ew standards and IDUCTOR AND JSPENSION CLA	CUs. Dra STATIC RELATI	awing Scale: ED INFO

THIS IS A COMPUTER GENERATED DRAWING - DO NOT REVISE MANUALLY

 $\left(\right)$ ANSI B 11" X 17"

PHASE CONDUCTOR ITTINGS FOR STATIC 5, CONTACT ELECTRIC 1.					
ne creation of new standar	ds and CUs.	Drawing Scale: N/A			
MISSION CONDUCTOR SUSPENSIO	AND STATIC ON CLAMPS	RELATED INFO	Revision 00 Date / /2014		
Approved By:Date App.:Barry R. Hart/ /2014	TM2.2	3.TJ-01-001	Sheet 3		